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NOMENCLATURE*

Matrices
[AJ Matrix for conversion from inertial reference to orbital reference
frame. Elements, ajj.
B] Matrix for conversion from inertial reference to balloon body axis
i coordinate system. Elements, by j.
r | :
C] Matrix used to specify orientation of balloon magnet with respect
: to balloon body axes. Elements, cjyj.
D] Matrix used to convert components outputted from magnetic torque
) subroutine to magnetic components along orbital reference system.
Elements, dj j.
E] Matrix used to convert from orbital reference frame to body axes.
) Subscript b denotes balloon body axes while subscript m denotes
magnet.. body axes. Elements, ejjb, efjm.
[F] Matrix to define solar vector components along inertial reference
frame. Elements, flj'
[H] Matrix for conversion from orbital reference frame to balloon

magnet body axes. Elements, hij‘

Coordinate Systems

i, j, k Reference frame for derivation of solar torque. The i axis is
directed along the longitudinal axis of the balloon. The j axis
is perpendicular to the solar vector and k forms a right-handed

orthogonal system.

w Earth reference frame where 1 is directed from the geocenter to
the_point on the equator at the Greenwhich meridian;l, is normal
to 1 and in the equatorial plane and w points along the north
pole.

r, p, q Orbital reference frame where r is directed from the geocenter
along the local vertical; p is directed along the velocity vector
and q is directed along the vehicle's orbital angular velocity
vector in the right-handed screw sense. :

u, v, w Inertial reference frame where u is directed from the heliocenter
to the spring equinox position of the geocenter; v lies in the
equatorial plane and is directed from the heliocenter to a point
north of the summer solstice position of the geocenter. w is
directed from the geocenter to the north pole.

* (FORTRAN language has been omitted unless it is used in Qﬁher places than
in section 5.1.5.1).
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;1, ;1, 1 Balloon yaw, pitch and roll body axes respectively.
;2, ;2, ;2 Balloon magnet body axes where ; is the dipole axis; ;2 and ;2
are aligned along ¥, Z; for )0 = 7= 0.
X2, Yas z Magnet body axes where X, is the dipole axis.y, and z, are aligned
3» 73> “3 373 T
along Y1» 21 for zero balloon and magnet attitude angles.

English Symbols

a Semi major axis of vehicle orbit.
a, Radius of loop or disc for eddy current analysis.
a,, Width of wire.
A Area of loop or disc.
APOG Apogee of vehicle orbit.
An Area of magnet,
b Damping coefficient in ft# sec.
-
B Magnetic flux density.
BR Radial component outputted from magnetic torque subroutine.
Bg Magnetic component directed along the local meridian, positive

in the direction of the velocity vector which is outputted from
the magnetic torque subroutine.

B0 Magnetic component directed along the local latitude arc, posi-
tive in a westerly direction when the vehicle is moving south
to north which is outputted from magnetic torque subroutine.

da1 Density of aluminum.

dps Density of bismuth

df Density of fluid

Dy, Time in days from winter solstice to orbital injection.

dA Incremental area.

e Orbit eccentricity.

E Eccentric anomaly, subscript o indicates value at orbit inmjection. -

E/c Ratio of the solar flux density to the velocity of light, also
called Pg,.
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F1 thru

Gx1> Gyl’

Gx3> Gy3’
GMTT

LAT

Gzl

Gz3

Force on the balloon due to solar torque. Subscript o denotes
force on the inner surface of the mesh balloon due to the solar
rays passing thru the top surface.

Intermediate parameters used to shorten solar torque equations.

Intermediate variables used to shorten Euler's dynamical equations.

Instantaneous Greenwich Mean Time.

Moment arm from arbitrary location of the center of rotation
to each element dA of the surface which is used for the compu-
tation of solar torques. Superscript, prime, denotes corres-
ponding moment arm for bottom spherical segment of lens.

Orbital angular momentum per unit mass.

Magnetic field intensity.

=

Magnetic component along

Magnetic component along S.

Qa

Magnetic component along
Current.
Moment of inertia in slug £ft2. Subscripts xx1,..... Y23 denote

moments and cross products around subscripted balloon and magnet
body axes.

Pitch and Roll Moment of inertia of vehicle.

Yaw moment of inertia of vehicle.

Damper moment of inertia.

Ratio of pole length to actual length.

Universal gravitational constant multiplied by the mass of earth.

Constant used to define ratio of closed area to open area of mesh
material.

Length of magnet.
Length of gravity rod.

Latitude of projection of satellite on earth.
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LONG

=]

=k

j=1]

T 1 thru T6

Vo

We

Longitude of projection of satellite on earth.

Magnet pole strength.

Magnetic moment. Subscripts 2 and 3 denote magnetic moment of
balloon and independent magnets respectively. Subscript e
denotes magnetic dipole moment of earth. M sometimes appears
as a magnitude of .

Mean anomaly, Subscript o denotes value at orbit injection.

Unit vector normal to surface of balloon, positive toward center.

Center of curvature for top spherical segment of lens. Superscript,
prime, denotes center for bottom spherical segment.

Solar radiation constant; see E/C.

Radius of damper sphere.

Radius of curvature of spherical segment of balloon,

Direction cosine between r and s. v .
Distance from geocenter to vehicle, magnitude of ;, also called r.
Perpendicular distance of satellite from earth-sun line.

Solar vector. |

Direction cosines between solar vector and balloon body axes.
Time.

Time at injection.

Elapsed time since injection for computer print out.

Torque. Subscripts dl’ $1, my, tyq, g1, M3, d3, Xysee-:23, i, j, k

or combinations of the preceding denote components due to a speci-
fied torque and along specified axes.

Amplitude of arbitrary torques.
Velocity.

Weight; subscript s denotes weight of inner sphere while subscript
o denotes weight of outer sphere.




Xq Offset measured along i axis from geometrical center of lens to
arbitrary center of torque.

Xy Distance from center of curvature of spherical segment to geo-
metrical center of lens. Superscript, prime,denotes corres-

ponding distance from center of curvature of bottom segment of lens.

YL Offset measured along 3 axis from geometrical center of lens
to arbitrary center of torque.

y10 Offset measured along the ;1 axis from geometrical center of
lens to arbitrary center of torque.

zq, Offset measured along %k axis from geometrical center of lens
to arbitrary center of torque.

10 Offset measured along the ;1 axis from geometrical center of
lens to arbitrary center of torque.
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Greek Letters

Angle between the ;1 and E axes.

Rotation about y, axis which represents one of the degrees of
freedom used to specify the orientation of the balloon magnet
with respect to the balloon body axes.

o A

Rotation about the z; axis which represents one of the degrees
of freedom used to specify the orientation of the balloon magnet
with respect to the balloon body axes.

Angle between satellite yaw axis and local vertical to earth.

Gap distance between the inner and outer spheres of the magnet.
Angle between ecliptic and equatorial planes.

Electro motive force (emf).

Orbital central angle measured from right ascension. Subscript o
denotes orbital angle at perigee measured from ascending node.
Subscript 1 denotes orbital angle at infection measured from

ascending node. Subscript 2 denotes vehicle orbital positgon
at injection measured from perigee.

=S ol =

e Angle denoting position of sun in i, k plane measured from i axis.
Gm Angle between the magnetic axis and the local line of flux.
Gp Pitch attitude angle, Subscript b or m refers to balloon or magnet

attitude angle respectively.

e Roll attitude angle. Subscript b or m refers to balloon or magnet
attitude angle respectively.

21

©
<

Yaw attitude angle. Subscript b or m refers to balloon or magnet
attitude angle respectjvely.

Integration variable for solar torque analysis which denotes an
angle along a '"longitude" line.

Fluid viscosity.
Constant equal to 4 x 1077 Henry/meter.

Orbit inclination.

LA S S

Polar angle of satellite in polar orbit. g;in a unit vector
normal to T in direction of satellite velocity.
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@y thru @g

Constant, 3.1416.
Solar reflectivity parameter. Subscript s and d refer to specular
and diffuse reflection coefficients of the surface material of

the balloon.

Orbital angular position of earth measured from winter solstice
position.

Projection of Cf in equatorial plane.

Resistance per unit length of wire.

Orbital period. Also used to denote time constant in orbits.
Distance from center of one wire to center of next wire.
Thickness of the conducting disc.

Wall thickness of gravity rod.

Regression period in days.

Complement of lens half angle,

Magnetic flux.

Phase angles of miscellaneous torques.

Integration variable along a "latitude" line of the sphere.
Subscript c¢ denotes sun shade line on balloon.

Right ascension. Subscript 1 denotes Greenwich hour angle at
injection. Subscript 3 represents projection of the orbit central
angle measured from equatorial crossing on the equator.

Orbital frequency.

Frequency of disturbance torques.

Angular body rates where subscripts x;...... Zz, denote rates

around respective balloon and magnet axes. Subscripts byz..... b, 3

denote balloon body rates resolved along magnet axes; subscripts
my] ... m,; denote magnet body rates resolved along balloon axes.

xiii/xiv



1.0

2.0

INTRODUCTION

A preliminary study of the feasibility of passively orienting and damping
the large lenticular satellite by the utilization of earth's gravity and mag-
netic fields has been completed as Phase I of Contract NAS 5-2324 with
NASA/Goddard. This study, assigned the acronym POLES (Passively Oriented
Lenticular Satellite), was accomplished during the scheduled period 21 June 1963
to 30 August 1963. This report documents the results of this contract phase,
consistent with the final project report specifications of NASA document
TID-S-100.

System performance analysis and damper design analysis and test will be
carried out as follow=-on to Contract NAS 5-2324, and the results will be reported
on in monthly progress reports and in a final report to be submitted at the
end of Phase II.

UMMARY AND CONCLUSIONS ﬁ\
S Loood

The system investigated was a 267 foot diameter lens (200 foot radius
of curvature) made of wire mesh material. Gravity gradient rods extending from
top and bottom provide the required moments of inertia for accurate gravity
gradient stabilization. The Magnetically Anchored Viscous Fluid Damper, con-
ceived and developed by General Electric Company was taken as the passive
damper model.

The major objective of the five tasks identified in the statement of
work (Reference 1) was the development of analytical and machine program tools
for subsequent system performance analysis.

A large angle, eight degree of freedom, digital computer program was
developed to numerically integrate the differential equations of motion. Also,
a characteristic root solution to the linearized planar motion equations was
programmed for conducting parametric studies. Equations for the significant
disturbance effects produced by solar pressure, eddy currents, and magnetic
perturbations were derived and parametric studies and weight estimates were
made to provide for system parameter tradeoffs.

A considerably more extensive performance study is required to verify
the performance capabilities of the system for decay from large errors and
the steady-state pointing accuracy when the satellite is subjected to
eccentric orbits and various disturbance torques.

No attempt was made in this study to solve the problems associated with
balloon inflation or of structural attachment of the gravity gradient rods and
damper to the balloon skin. Purely from an attitude control standpoint, the
passive stabilization of the lenticular balloon to an accuracy of + 3 degrees
does appear to be feasible. The total weight of the attitude control system
including gravity gradient rods, their extension mechanisms and power supplies,
and the passive damper would be approximately 90 to 150 pounds. A



3.0

3.1

3.2

PASSIVE ATTITUDE CONTROL SYSTEM DESCRIPTION
GENERAL

The balloon was assumed to be made of two 84° segments of a 200 foot
radius sphere joined together to form a lenticular shape, with principal
moments of inertia of 178,000 and 90,000 slug ft.2., The system configuration
selected for stabilizing the lenticular balloon consisted of a pair of gravity
gradient rods extended vertically (one up, one down) from the centers of the
two spherical segments and a magnetically anchored viscous fluid damper which
could be mounted either at the balloon skin line or on an internal support
structure at the center of the balloon. (See Figure 3-1)

GRAVITY GRADIENT ROD DESCRIPTION

The gravity gradient rod is a tubular element formed out of beryllium
copper, steel or a silver alloy strip metal heat-treated into a circular
section in such a manner that the edges of the material overlap by approximately
180 degrees. The tubes under consideration for this application are about
1 inch in diameter with .005 inch thick wall. This provides an element with
a bending strength almost equivalent to that of a seamless tube of the same
diameter and thickness. The rTods when retracted are stored in a strained,
flattened condition by winding on a drum. As the flattened strip is extended
it coils into a tubular shape as a result of pre-stressing. The elastic
energy in the flattened strip and the energy generated by rolling the strip
in the drum supplements the motor power in extending the rod. One-shot
batteries would be carried to drive the extension motors.

The motor controls the rate of erection, indpres amplé erecting force,
and allows retraction during ground testing. Spring retaining belts keep the
strip wound tight on the drum in all extension positions. Other guidance
devices ensure that the strip pays out and coils smoothly and is properly
directed. These devices also support the extended rod. Light weight materials
are used throughout the structure. The side plates are aluminum. Nylon,
melamine and fiberglas are used for other parts. All ball bearings are of the
double-shielded type, having low-vapor-pressure grease lubricants. A telemetry
potentiometer is used to indicate the length of rod extended. Limit switches
will cut off the power at full extension and retraction. Due to the irrever-
sibility that results from the large reduction in the motor gear head, the
rod is held at the position where the motor stops.

The system described above is known as the STEM (Self-storing Tubular
Extendible Member) technique which has been under development by DeHavilland
Aircraft of Canada, Limited for a number of years. Many configurations have
been produced for use as antennae and successfully flight demonstrated on
such programs as the Alouette S.27 Topside Sounder Satellite and the Mercury
Capsule.
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3.3

Beryllium copper tubes were used on the Alouette Program and steel tubes were
extended on Mercury Capsules. For the lenticular balloon application, however,
where very long rods are required for obtaining the high moments of inertia, a
silver alloy rod currently under development by General Electric Company under
contract to NASA-AMES is recommended because of its high thermal conductivity
and solar reflectivity. Beryllium copper rods up to 850 feet in length have
been built by DeHavilland to be used as antenna; however, thermal bending would
produce a maximum tip deflection of this rod of approximately 330 feet. By
using the silver alloy rod, the tip deflection of an 850 foot rod would be

only about 50 feet. Placing a dead weight on the end of the rod can achieve
the desired moments of inertia with shorter rods. The selection of the length
to be used on the lenticular balloon would require an optimization study and
trade off between system weight and thermal bending deflection.

DESCRIPTION OF DAMPER

The magnetically anchored viscous damper, see Figure 3=2, consists of
three elements: (a) viscous damper, (b) magnetic anchor, and (c) magnetic
suspension. The device is completely passive, requires no external sources
of power for operation, has no rubbing parts and is ideally suited for long
life reliable operation in a space environment. None of the elements incor-
porated represents an advance in the state of the art or represents basically
new and untried concepts.

The viscous damper consists of two concentric spheres with a viscous
fluid between them. When there is a difference in angular velocity, there will
be a viscous shearing action which results in a dissipation of energy. 1In
order to produce a difference in angmular velocity of the spheres and to be
assured that they do not eventually "lock-up" on each other, the inner sphere
is fixed to the earth's field by the magnetic anchor. This is achieved by
a bar magnet attached to the inner sphere, which acts essentially as a compass
needle, always aligning itself parallel to the earth's magnetic field. The
magnitude of torque exerted by the magnet is a function of its magnetic moment
and the magnetic field intensity of the earth: T = MH sin em where

M is the magnetic dipole,
H is the earth's magnetic field intensity, and
Om is the angle between the magnetic axis and the local line of

flux.

In order to assure the concentricity of the spheres and to prevent any
possibility of rubbing under operating conditions, the spheres will be separated
magnetically. This separation will be attained by a magnetic suspension in
which a diamagnetic material is repelled by a magnetic field. The outer sphere
will be made of a diamagnetic material, and the magnetic field will be produced
by permanent magnets attached to the inner sphere.
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Figure 3-2, Viscous Fluid Damper



3.3.1 Viscous Damper

Damping will be obtained by the relative motion of two concentric spheres
which are separated by a viscous fluid. The concept of utilizing the motion of
concentric spheres to produce damping is not new in the state of the art. It
results in a small, lightweight, and most important, a completely passive device.

For sphere of radius r,, cm and angular velocity L/ radians per second, it
can be shown that the damping torque is

T = %-H’-Tfrdé"(,_/ dyne cm. (3.1)

where [[ is the viscosity of fluid;
(5 is the gap between the inner and outer spheres.

There are three general groups of fluids which can be considered for the
damping media: hydrocarbons, silicones and fluorocarbons. The selection of
fluid will depend upon its inherent physical and chemical properties together
with the system requirements as to the allowable variation of damping as a
function of temperature. The silicones are the least temperature sensitive and
the fluorocarbons the most temperature sensitive. The specific gravity is
another important physical criteria. Since it is anticipated that the inner sphere
will be made buoyant, a more dense fluid could result in a smaller and lighter
over-all component. If the high viscosity-temperature coefficient of the fluoro-
carbons can be tolerated by the system requirements, then its high specific
gravity can prove to be a definite asset to the damper design.

Both the silicones and fluorocarbons show long term temperature stability,
in the absence of oxygen, up to 575°F. They are not corrosive when in contact
with the usual materials of construction. These fluids are in current use for
aerospace application and are extensively used as damping media. The viscosity
of the silicones and fluorocarbons will change slightly with time due to exposure
to the radiation environment. However, the bismuth shell used for diamagnetic
suspension also acts as an excellent radiation shield, holding the viscosity change
to less than 3 per cent in three years.

3.3.2 Magnetic Anchor

The magnetic anchor serves to hold the inner sphere fixed while the outer
sphere, which is attached to the spacecraft rotates. The magnetic anchor locks
the inner sphere to the earth's magnetic field by means of a longitudinally mag-
netized bar magnet attached to the inner sphere. This bar magnet act as a magnetic
dipole which will be torqued by the earth's field. The use of a magnetic dipole
to orient a satellite is not a new concept; it has been used successfully in Transit
1B and 2A, where an Alnico V bar magnet 4 inches long, and 1 inch in diameter
was used.




4.0 PARAMETRIC DAMPING STUDIES
4.1 CHARACTERISTIC METHOD OF SOLUTION

Application of the root locus technique to the POLES satellite requires the
derivation of the linearized equations of motion. The equations derived for
the three axis computer program can not easily be linearized, and if linearized,
would result in a set of equations which is unlikely to be amenable to optimi-
zation. It is simpler to make the appropriate assumptions prior to derivation.
The analysis is given in Appendix I, but the assumptions made in the analysis
will be discussed below.

The system being analysed consists of two bodies, each of which has three
degrees of freedom (excluding orbital freedoms). Two three degree of freedom
systems result in six second order dynamical differential equations. It is not
practical to linearize all six equations, and only those degrees of freedom
which are important should be linearized. The yaw position of the vehicle is
irrelevant from the satellite mission standpoint, and roll motions appear on
the yaw axis because of orbital rate, preventing accurate linearization. There-
fore, the equations describing the motion in pitch have been linearized. However,
pitch and roll motions are sufficiently similar that parameters optimum for pitch
are nearly optimum for roll.

The analytical model of the earth's magnetic field assumed in the analysis
is a simplified magnetic dipole. The simplified dipole permits the equations
to be solved, but excludes many of the characteristics of the field. One such
characteristic is the variation of the Earth's magnetic field due to the location
of its equivalent dipole axis. The dipole magnet is not located on the Earth's
spin axis, nor does it pass through the geographic center of the earth. As a
consequence the magnetic field rotates every twenty four hours (with respect to
inertial space), causing a change in the direction and magnitude of the field
at any fixed point in space. A satellite in orbit will- experience an additional
field variation due to a change in field strength with magnetic latitude. 1If
the orbit is in the plane of the magnetic equator, the field strength will be
minimum and constant. For a polar orbit, however, the field strength will vary
from a minimum at the equator to a maximum at the poles (equal to twice minimum).
For orbital inclinations between zero degrees (equatorial) and ninety degrees
(polar), the field strength will change from the minimum to a maximum dependent
upon the orbital inclination. .

A third characteristic of the magnetic field which must be simplified for
analysis is the variation of the orientation of the lines of flux of the field.
Consider the damper of the satellite in a polar orbit about a dipole magnet coin-
cident with the spin axis of the earth. At the North Pole, the south seeking
pole of the damper will be.painted toward the North Star (Polaris). At the South
Pole, the south seeking pole of the damper will be pointed toward the North Star
and toward the earth, which is exactly one inertial rotation. Hence, for every
orbit, the damper makes two rotations, or its rotatiomal rateis twice orbital,.

This is the average rate assumed in the analysis. It should be pointed out, however,
that the actual rotational rate varies considerably throughout the orbit, since the
magnet follows themagnetic lines of flux,not the local vertical. The rotational
rate is largest at the magnetic equator and least at the poles. Since the damper is
coupled to the vehicle by a viscous damper, the variation in damper rate appears

as a disturbance torque on the vehicle.

7
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Qualitative (as well as quantitative) analysis indicates that the disturbance

torque is periodic with a period of approximately 2 TT/ZLJO, where Ljo is orbital .
rate. If the orbital inclination is not ninety degrees, the magnet rotates out of

the roll-yaw plane, and its rate of rotation in pitch is altered. Hence for orbits
other than polar, a planar analysis is not particularly meaningful.

As mentioned previously, the simplified dipole excludes many of the character-
istics of the magnetic field from the analysis. However, the effect of these
characteristics on the vehicle can be included. The planar analysis was restricted
to polar orbits to avoid rotation of the damper magnet out of the roll-yaw plane,
and the change of the magnetic field with latitude in this orbit is compensated
for by using an average field strength for the orbit. (See equation I-12 in Appendix I).
The effect of the non-uniform rotation of the flux lines is included by assuming a
constant rate of twice orbital and employing a ‘dynamic amplification factor. This
factor will be discussed later in the section.

Additional limitations of a secondary nature noted in Appendix I are a circular
orbit and equal pitch and roll inertias. These limitations do not significantly
restrict the analysis.

With the above limitations and restrictions, the dynamical equations were
derived and linearized about a final steady state position. The linearized equa-
tions were put in operator notation and a fourth order algebraic equation (quartic)
was derived. By an appropriate change of time scale, the dynamical equations were
non-dimensionalized, and the roots to the quartic, which was solved on a computer,
are consequently non-dimensional. The roots to the quartic are either complex con-
jugates with negative real parts, or negative real roots. The imagirary part of »
the complex root is the ratio of the damped natural frequency to the orbital fre-
quency, and the real part (and/or real root) is the ratio of the logarithmic decre-
ment to orbital frequency. The logarithmic decrement is the exponent of the e
term preceding the sine term in the closed form solution, and since exponential
decay is desired, it should have a negative value. The reciprocal of the logarithmic
decrement is the time constant in terms of orbital rate. Introducing a factor of
2 TT , the time constant can be put in terms of orbital period or simply orbits.

There are four roots to the quartic, two of which describe the damper mode
and two of which describe the satellite mode. The differences in time constant
and natural frequencies clearly indicate which numbers apply to the damper and
which apply to the satellite.

The steady state conditions given by Equations I-32 and I-33 in Appendix I are
average or static conditions used in the dynamic analysis. From the vehicle stand-
point this angle is an error which cannot be compensated for because the yaw position
of the balloon is not specified (i.e. there is no way of determining if the error is
to the 'right" or "left" of the yaw axis). 1In addition to this static error, there
is a dynamic error caused by the variations in the magnetic field mentioned earlier
in the report. The magnitude of the dynamic error is dependent upon the ratio of
the forcing frequency to natural frequency. The forcing frequency is twice orbital,
but the natural frequency of the satellite is dependent upon its yaw inertia ratio.
Considering the maximum amplitude of the forcing function to be equal to that causing
the error, the maximum anticipated error can be determined as a function of yaw
inertia ratio. The analysis can be found in Appendix II. N




A steady state error can also be determined for the magnet, but since the
exact position of the magnet is of no concern, its error has been termed an offset
and has not been limited to small angles. As will be indicated later, however,
this offset does affect the performance of the damper. The analysis of the offset
can be found in Appendix II.

4.2 SIGNIFICANT STEADY STATE PERTURBATIONS

The only steady state perturbation discussed in section 4.1 was that due to
variations in the magnetic field. These were included in that section because of
the close relationship between magnetically induced oscillations and the satellite
damping time. Other steady state perturbations exist which are not associated
with the magnetic field, the most significant of these being solar torques and
orbiteccentricity. Of the two, orbit eccentricity appears to be the largest. The
effect of these on the satellite performance and optimization will be discussed in
sections 4.3 and 4.4.

4.3 SYSTEM PARAMETER TRADEOFFS

Computer solutions to the quartic indicated that the natural frequency of the
satellite was unaltered by the presence of the damper. The natural frequency can
therefore be computed from the linearized three axis equations for a single body
under the influence of gravity gradient torques. Figure 4-1 is a plot of the
natural frequencies for the three oscillatory modes as a function of the satellite
inertia ratios. The right hand boundary of this frequency map represents the
lenticular vehicle which has equal pitch and roll moments of inertia. The region
of bi-stability is a region where the satellite has a stable position two 90° ro-
tations away from the desired position. As a consequence this region will not be
considered.

For all but the most lightly damped satellite, the damper was overdamped and
had no natural frequency. Even where the natural frequency did exist, however,
it was not plotted because it is not relevant to the vehicle behavior. 1In general
its oscillation frequency is twenty to thirty times higher than that of the satellite.

The results of the steady state analysis are given in Figures 4-2 and 4-3. The
steady state error shown in Figure 4-2 is a combination of static error and dynamic
oscillations and should be a worst case. Preliminary three axis runs indicate that
the linearized analysis is approximately correct. The optimum yaw inertia ratio
to produce the least steady state error for a fixed damping coefficient is between
.2 and .3. The value of the steady state error can be selected as an input, and
the necessary damping determined. However, the damping also affects the decay time
of the satellite and a tradeoff between decay time and steady state error is required.
A complete tradeoff includes other steady state perturbations such as solar torques
and orbit eccentricity. Orbit eccentricity appears to be the most significant
factor (Figure 4-4) and may place a lower limit on accuracy capability. If so, there
is no advantage to keeping the magnetically induced error small in comparison with
the orbit eccentricity error. Selecting the allowable magnetically induced error
to be of the same order of magnitude as the orbit eccentricity error permits reduction
of the satellite time constant (Figure 4-10).




Figure 4-1, Natural Frequency Map
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Figure '4-3 1is the offset of the damper magnet from the magnetic field.
The analysis which resulted in this plot is conservative, but the final system
may be as conservative or as marginal as desired by the appropriate selection
of offset. Preliminary three axis runs indicate offsets of twenty degrees or
less all have identical damping characteristics. The 'knee' of the curves in
Figure 4-6 and 4-7 occurs at an offset of ninety degrees and cannot be used.
The damper performance at intermediate values has not been determined, but offsets
of forty-five degrees do not appear possible. A high offset allows a smaller
magnet strength to be used, and since the magnet weight and damper weight both
depend upon the magnet strength, high offsets result in lightweight dampers.
Figure 4-5 is a preliminary weight estimate of the damper as a function of
magnet strength. The maximum permissible offset will be determined by the three
axis computer program. The damping parameter does not directly affect the
damper weight, but a reduction of the damping parameter permits a similar reduction
of magnet strength (Figure 4-3).

The real parts of the quartic roots which apply to the satellite were normalized
to an orbit scale and plotted in Figures 4-6, 4-7, and 4-8. The introduction
of the new time scale into the analysis (Appendix I) has permitted the use of
non-dimensional parameters. Hence all the results are independent of orbit, in-
cluding both the steady-state response and the transient response.

Of the four parameters b/IBLJO, 1p/1p, IBO/IB, and M/Ig, only the damper
inertia ratio, IB/Ip, has been excluded from all the figures. It was found to
be irrelevant. With the parameters of Figure 4-7 for example, changing the
damper inertia ratio from 104 to 106, decreased the real root by .01 per cent.
For all practical purposes, therefore, the damper inertia, for the range of satellite
inertias under consideration,has no effect on performance and need not be considered,
further.

Figure 4-6 shows the performance characteristics of a vehicle with a constant
magnet parameter, M/IB of two, and several yaw inertia ratios. For damping para-
meters less than 0.007, all the inertia ratios examined have the same time constant.
For damping levels greater than .02 a larger magnet parameter is required for
stability. Figure 4-7 is the same set of curves with a magnet parameter of four.
The result of magnet parameter increase is to shift the ''knee' of the curves into
the region of higher damping parameter. Thus, all the yaw inertia ratios have
identical time constants below a damping parameter value of .015 for M/IB = 4
compared to the value of .007 for M/Ip = 2.

Figure 4-8 is a composite of Figures 4-6 and 4-8 considering only one yaw
inertia ratio. A magnet parameter of eight was also included. This figure indi-
cates that if the magnet parameter is increased as the damping parameter is in-
creased, the curve reduces to a straight line (on logarithmic graph paper) which ™
is the envelope of all the magnet parameter curves. The envelope is plotted in
Figure 4-9.
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The reduction of the quartic solutions to the curve of Figure 4-9 indicates
that the only parameter of significance is the damping parameter, providing the
magnet parameter is selected adequate to the task. Figure 4-8 indicates that ex-
tremely strong magnet would perform satisfactorily, but a weight penalty would be
incurred as discussed previously. Selecting the magnet parameter from Figure 4-3,
consistent with a reasonable offset, will provide adequate damping and prevent the
damper weight from becoming excessive. Optimization of the magnet offset should
provide the least damper weight for any selected damping parameter.

Since steady state damper induced error and the decay time constant both depend
solely upon the damping parameter, a cross plot of these parameters is possible.
Figure 4-10 is this cross plot, employing lines of constant yaw inertia ratio.

These lines appear because the steady state error is dependent upon the yaw inertia
ratio, whereas the time constant is not. The lines represent more than one inertia
ratio, because the steady state errors "double back'" on themselves (Figure 4-2),
and attempting to plot all the lines would cloud the graph. Hence, lines repre-
senting two inertias were employed.

4.4 SELECTION OF OPTIMUM PARAMETERS

Optimization of the POLES satellite requires that weight as well as performance
be optimized. Considering Figure 4-2, a yaw inertia ratio of .25 has a minimum
magnetically induced error, and can be tentatively accepted as optimum. At the
anticipated eccentricity of .016, the steady state error would be approximately 1.5
degrees (Figure 4-4). Selecting a magnetically induced error of one degree (which
is the same order of magnitude as the orbit eccentricity error) yields a damping
parameter of .0171 and a time constant of twenty orbits (Figures 4-2 and 4-9). From
the performance standpoint this is adequate. However, with a twenty degree offset,
the necessary damping parameter requires a magnet parameter of 6.6. The pitch
moment of inertia of the POLES satellite if 712,000 slug-ft2. This inettia necessi-
tates a magnet strength of 4,700,000 pole-cm. The weight of the damper required
for this task (from Figure 4-5) is 540 1b. The satellite has a nominal weight
(excluding damper) when fully deployed of approximately 500 1b. If the damping
level is reduced, the damper weight is reduced and the time constant is increased.
Figure 4-11 is a curve of damper weight versus time constant and indicates a
sharp decline in damper weight with increasing time constant. The optimum point
should be near the "knee'" of the curve and a time constant of forty orbits and a
damper weight of 170 pounds has been selected. The weight is still somewhat larger
than desired, but has been tentatively selected as an operating point. For this
operating point, the damping constant is 3.59 lb-ft-sec/rad, and the magnet strength
is 2,700,000 pole-cm.
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5.0 DEVELOPMENT OF THREE-AXIS DIGITAL COMPUTER PROGRAM

This section contains the complete description and equations for the computer
program. Some results of preliminary studies are also included.

5.1 THREE-AXIS DIGITAL COMPUTER PROGRAM
5.1.1 General

This report includes the attitude dynamical equations of a satellite, consisting
of two independent rigid bodies which are coupled through damping, and describes
an IBM 7090 computer program which solves these equations by numerical integration.
The use of the computer is mandatory because of the magnitude of the problem and
because of the nonlinearities due to cross-coupling effects and to the relations
between the external torques and the vehicle attitude and angular rates. The pro-
gram is a tool for studying the attitude behavior of the vehicle under a variety of
initial conditions and vehicle parameter values. Thus it is suitable for feasibility
studies and approximate parameter optimization.

The heart of the analysis is the set of Euler's dynamical equations. These
are written for torques, angular velocities, and angular accelerations about geo-
metric axes. Hence, the terms involving products of inertia are retained. For
the main body, the geometric axes used are parallel to bhose of symmetry, but trans-
lated so that the origin is at the center of mass of the main body.

The center of mass of the main body is assumed to follow a circular or elliptical
orbit about the geocenter in a plane whose orientation is fixed in inertial space.
The coupling effects between the vehicle's attitude motion and the vehicle's orbital
motion are neglected. An approximation to orbital regression is included.

The external torques on the main body are those due to gravity gradient, solar
radiation pressure, miscellaneous disturbances, magnetic damping and magnetic torque
due to the net dipole of satellite in the earth's field. The external torques on
the magnet are those due to its orientation in the earth's field and damping from
the vehicle. The program has sufficient flexibility for the incorporation of torques
due to other effects such as solar torques on the gravity rods, thermal bending on
the rods and eddy currents caused by the earth's magnetic field.

The solar torque subroutine, which is included, defines solar torques on a
lens shaped satellite composed of two dimensional mesh material. Equations are now
available for the three dimensional mesh material. This change will pose no problem
to the program since the net result will merely be the substitution of one subroutine
for another.

The effects of the earth's shadow are also accounted for. Whenever the vehicle
is in the earth's shadow, all solar torques are zero. In the derivation of all
solar torques and of all shadow effects, it is assumed that all of the sun's rays
in the vicinity of the earth or of the satellite are parallel, and that the intensity
of the radiation is constant.
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The effects of other celestial bodies, magnetic storms, internal moving parts,
particle impacts, earth's albedo, etc. are neglected.

The angular accelerations about the body geometric axes are obtained as the
solution of Euler's dynamical equations. These angular accelerations are numerically
integrated to obtain the angular rates about the body axes. The required Euler
angular rates are calculated from the body axis rates. The necessary equations are
obtained by differentiating the equations describing the appropriate Euler trans-
formation and solving for the rates. These rates are also integrated numerically
to obtain the Euler angles. The angles used are those involved in the transformation
from the orbital reference frame to the main vehicle reference frame, and in the
transformation from the latter frame to the auxiliary vehicle reference frame.

The numerical integration method used provides for a variable integration
interval, controlled by the computer in accordance with the computed numerical
integration errors and a set of specified tolerable errors. This provides a con-
sistent balance between accuracy and economy.

The maximum degree of flexibility in the whole program is achieved by the use
of flexible subroutines for initialization, orbital parameters and variables, time
derivatives to be integrated, numerical integration, external torques, and output.
The output may be plotted by am X-Y plotter.

5.1.2 Vehicle Description

The vehicle has been described in section 3.0 to be basically composed of a
lens shaped mesh balloon, two gravity gradient rods and a magnetically anchored damper
system. It is intended here to define the coordinate axis system which was used in
this program to define the POLES satellite. Figure 5<1 shows the satellite in a
typical orbital attitude. The following axis definition assumes zero vehicle attitude
angles. The axis from the local vertical to earth, positive away from earth, is the
vehicle yaw axis which is called X;. The vehicle roll axis is directed along the
velocity vector and is defined as yj. 23], the vehicle pitch axis, is directed along
the vehicles orbital angular velocity vector; it is approximately out of the plane
of the paper in Figure 5-1.. To simulate any net dipole of the satellite, provision
has been made in the program for a magnet which is rigidly attached to the vehicle
with its dipole at some fixed orientation with respect to the balloon body axis.
Ihis magnet dipole axis has been defined as X,. The ?& and'Eé axes are normal to
Xo and aligned along y] and Z; if X, is also aligned along Xq-

The free floating magnet is defined by axes, X3, yj3 and z3. These axes are
defined in the same sense as the xy, y;, %] system. The magnet dipole axis is §3.
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5.1.3 Coordinate Systems and Transformations

Several reference frames are required for the analysis. Each of these is
described in terms of a right-handed orthonormal triad of vectors.

The first is the inertial reference frame, described by the triad uvw, and
illustrated in Figure 532. u is directed from the helio center to the spring
equinox position of the geocenter. ¥ lies in the equatorial plane and is directed
from the heliocenter to a point north of the summer solstice position of the geo-
center. W is directed from the geocenter to the north pole.

The angle between the ecliptic and equatorial planes is € = 23.45 degrees.
The orbital angular position of the earth, measured from the winter solstice po-
sition, is designated Cr. The unit vector s, directed from the heliocenter to the
geocenter, is expressible in terms of a row-matrix [F] .

-~

T - (7] v (5.1)

The elements of the matrix [F] are

= sin Cf
= -cos € cos a (5.2)

h
-
(=)

|

H
=
N

|

f13 = sin € cos 0.

The second reference frame is fixed in and rotates with the earth. This
frame is described by the right-handed orthonormal triad, 1, 1,, and w and is illus-
trated in Figure 973. 1 is directed from the geocenter to the point on the equator
at the Greenwich meridian. The Greenwich hour angle, measured from u, is.(ll, and

1="1 cos‘fll +v sin.(ll. (5.3)

An expression ford; , in terms of time of year, Greenwich Mean Time at injection
and instantaneous orbital time will be discussed in Section 5.1.5.5.

The third reference frame is the orbital frame, described by the right-
handed orthonormal triad rpq, and illustrated in Figure 534; .t is the unit vector
directed from the geocenter to the satellite position, 4q is the unit vector
directed along the vehicle's orbital angular velocity vector in the right-handed
screw sense, P is a unit vector in the orbital plane and is directed along the
velocity vector if the orbit is circular. T, P, and q may be expressed in terms

of U, Vv, and W by means of a matrix [A],

; =[4 : | (5.4)
q W
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The elements of the matrix [A] are
ajy cosﬂcosn - sin{2cos UV sinn

a;, = sin{Xcos TZ + cos{2 cos V/ sinrz

i

ajz = sin U/ sinTz

ay = -sin ) cos 71 cos V. cosﬂsinn

agy = cos (] cosn cos V- sinQ) sinTl

ayy = sin U cos T(

ag; = sinf) sin V

g, (5.5)
a32 = -cos () sin
agy = cos U,

As illustrated in Figure 5s5 ) is the right ascension of the ascending
node, I/ is the orbital inclination, and /] is the orbital angular position measured
from the ascending node. The transformation from the inertial frame to the orbital
frame corresponds to three rotations, each in a right-handed screw sense: (1)(2 about
the W axis, (2) I/ about the line of nodes (positive from the geocenter to the as-
cending node), and (3) 72 about the g axis, When<1l, /), and n are all zero, T is
along U, p is along ¥, and g is along W.

The subroutines used for computing the orbital parameters and the orbital
position TI are described in Section 5.1.5.

The fourth reference frame is fixed in the main body of the vehicle (balloon).
This frame is described by the right-handed orthonormal triad x; y; 2z;. The desig-
nation of these main vehicle geometric axes has been described in Section 5.1.2
and illustrated in Figure 5rl,

The balloon coordinates xj, yj, 2] and the magnet coordinates x3, y3, 23 are
related to the orbital coordinates by the Euler angle transformations [Eb] and [Em]
respectively:

Xl r
- [m)

1 bl [P (5.6)
-21- -q -
r—x3- ,—-r -

Yo |= [E ] P

3 m (5.7)
23 q
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The elements of the [E] matrix are:

€} = cos Gp cos 6.

ey = sin Qp cos 6,

ej3 = -sin 6,

e, = cos Gp sin 6, sin Qy -sin Gp cos Oy

€gp = cos Qp cos Oy +sin Op sin 6, sin Oy

e23 = cos 6. sin Oy

eq) = sin Qp sin Qy + cos Qp sin 6, cos Gy

€3y = sin Gp sin 6, cos Qy -cos Gp sin Gy (5.8)
eqq = COS ©, cos Gy

Note, the subscripts b or m must be attached to the above matrix elements
and Euler angles to denote whether the parameters denote the relation of the balloon
or magnet to the orbit coordinates. Figure 576 illustrates the Ed transformation
from orbital coordinates to the balloon body axes., A similiar figure could be used
to illustrate the transformation from orbital coordinates to the magnet coordinates,

x3,y3,z3.

In Section 5.1.2 it is seen that'ié tepresents the dipole axes of the magnet
while ?5 and Z3 are aligned along the roll and pitch axes of the balloon for zero
attitude angles.

The transformation matrix [E ] corresponds to three right-handed rotations;
1) gpb about the q axis, (2) %/pb aBout the intermediate §i axis and (3) o b about
the Ei axis., When ?Eb’ O:p> and 6.4 are all zero, xy lies along r,'§i lies along
P and Z; lies along'q. When 6pp, Srb and Oy} are all small, they may be considered
pitch, roll and yaw attitude errors respectively, Similiar remarks hold for the
transformation [Em

Besides the magnet which is floating free with respect to the balloon,
another magnet must be simulated. This magnet is rigidly attached to the balloon
although its axes are not necessarily aligned with the balloon axis. For purposes
of identification, this magnet will be spoken of as the''balloon magnet" while the
independent magnet will not be specially identified. Two degrees of freedom will
be sufficient to relate the new magnet axes, X2, yp, %, to the balloon axes, X1s ¥po

21.
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Therefore,

X2 Xl
y,| =lc] |n (5.9)
Z2 Zl

where x5 is the dipole axis and
€11 cos?ﬁ cosJLB
c = sin7 cosﬂ

12

c13 = -sin/3

Cop = -sin7

c = cos]r

22

C23 =0
€37 = cos 7 sinﬂ
€39 = sin]r siq[}

c33 = coil] (5.10)

7ris a rotation about the z_ axis while /3 is a rotation about the'§é axis. These
angles will be constant for a given configuration.

[ It can be seen that the balloon magnet can be related to orbit coordinates by
d

y2 = [H] p (5.11)
z, q
where [H] = [CJ [Eb] (5.12)

The position of the sun with respect to the balloon axes is necessary for the
computation of the solar torques on the balloon. This can be represented as the
dot product of the body axes and the sun vector expressed in the earth-centered
inertial coordinate system, u, v, w. The balloon axes may be related to the orbital
coordinates by the matrix B} :

-

Xl ' u
v, | = [8] |v| ‘ ' (5.,13)
Zl w
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where [B] = [Eb] [AJ (5.14)
Therefore, from equations (5.1) and (5.13)

sx1 = 8+ X = f1ibyy *+ £19b3p ¥ 3303
sz1 = s ¢ 21 = fy1b3; + f12b32 + £33b33

The magnetic field is computed by a subroutine programmed by Dr. R. T. Frost.
The inputs to this subroutine are altitude in kilometers, longitude and latitude.
The output represents the magnetic torque and the components along earth referenced
coordinates. These components are

Brs radial component, positive inward

Bg, directed along the local meridian, positive in the direction of
the velocity vector

Bp, directed along the local latitude arc, positive in a westerly direction
when the vehicle is moving south to north,

These magnetic components must be resolved along the orbital coordinates. Thus

Hr -BR
Hp = [D] Bg (5.16)
B q Bﬂ

where Hr’ Hp’ H, are the components a}ong the r, p, q axes respectively. Since

Hy = -Bg, the [D] transformation is a rotation about H,. It can be shown that

the matrix elements of [D] are:

dyp =1
dip = 0
dyj3 = 0
dpy = 0

dgg = sin/ cos_n_3

dpg = -cos /) /cos LAT

d3; =0

d3p = cos I/ /cos LAT (5.17)

d,, = sinl/ cos.[l3
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To define the damper torques which the magnet exerts on the balloon and which
the balloon exerts on the magnet, it will be necessary to define the balloon body
rates in terms of the magnet body rates and vice versa. The rates around the
magnet axes can be resolved along the balloon body axes by the following trans-

formation:
hjmxl W x3
W/ = |E| |Eqn 1| W/
myl [ J [ m q y3 (5.18)
ijzl LL‘jz3

The rates around the balloon body axes can be resolved along the magnet axes
by the following transformation:

| L‘-/bx3 L‘/xl
Wiys | = [Em][Eb'l] Wy (5.19)
W23 W,

[ 5.1.4 Vechicle Attitude Dynamics

The attitude dynamics for the two body simulation are expressed in Euler's
; dynamical equations. The interaction of the two bodies is expressed through the
; . magnetic damper torque.

The dynamic equations for the balloon contain terms for changing moments of
inertia. These are included so that the satellite may be studied during rod exten-
sion. Provisions have been made in the program so that a subroutine to define the
time varying moments of inertia can be included for each vehicle configuration.

The dynamic equations for the balloon are as follows:

W (*/zl Hyxl ijl 'Ixyl Ljyl

“Ixz1 W zl +(“jyl Gz1 -zl Gyl

Tx1 = Ixx1 ijl yl “Iyz1

Ixyl

Ty1 = iyyl W yl “Ixy1 Wx1 'IyZILJ21 +lyyl nyl “Ixyl nyl
yzl W 1+'szl Gx1 'ijl Gz1
Tz1 = Izz1 L/zl Txz1 L/xl yzl L/yl +lzz1 L"/zl -Ixz1 LJ
“Iyz1 yl*u Gyl"uyl Gx1 (3.20)
where
x1 = Ixxl Wx1 “Ixyl Ljyl “Ixz1 Wo1
g1 = “Iayilx1 #ygp1 Ly1 ~Iya1Wan

Gz1 = “Ixz1 Wix1 -Iyzl Wy +Izz W (5.21)
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The equations of motion for the magnet are the same as those listed above for
the balloon except that the subscript must be changed from (1) to (3). Also the
moments of inertia will not change with time.

Therefore,

Ty3 = Ixx3 W x3 ~Ixy3 L/y3 “Ixz3 W23 +L“"‘y3 Gz3-t 23 Gy3

Ty3 = Lyy3 W/ y3 -Ixy3 Ligs -Iyz3 & 23 +1vz3 6x3-Wx3 Gz3 ;
T3 = 1223 W23 -Ixe3 Wi3 -Iyz3 Wy3 +%x3 6y3-Uhs 6x3 (5.22)

Gx3 = Ixx3 Wx3 -Ixy3 Wy3 ~Ixz3 Wa3
= ‘Ixy3td§3 +lyy3 hij -1yz3 sz3
Gz3 = -Ixz3L/x3 -lyz3 Ljy3 +1223 sz3 (5.23)

The T's represent generalized torques. The balloon will have five torques
acting on it: !

Tgl gravity restoring torque

le damper torque

'l‘s1 solar Lorque a
Ty torque on rigidly attached magnet, must be resolved along x1, yj1,2] axes |
Tiq disturbance torque on balloon

The magnet will have two torques acting on it:

Th3 magnetic restoring torque
Ta3 damper torque
Thus Tl = Tgl +Tgq1 + Tg1 + Ty + T

. i (5.24)
Ty =Ty3 * 143

Ty and T4 may be broken into their components:

¥

Ty1> Tyl’ T21» Tx3s ry3’ 123
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5.1.4.1 Gravity Restoring Torques on Balloon

The non-uniformity of the earth's gravitational field results in a field
gradient, In this analysis the earth is assumed to be perfectly spherical, so
the gravitational field varies inversely as the square of the geocentric distance.
Thus, when a satellite is in orbit, the force per unit mass is greater in the region
occupied by that portion of the satellite closer to the earth, and it is less in
the region occupied by that portion of the satellite farther from the earth. 1If
the satellite has three unequal moments of inertia about its principal axes, the
only position of stable equilibrium is that in which the axis of least moment of
inertia points along the local vertical, and in which the axis of greatest moment
of inertia is perpendicular to the orbital plane. In any other position the sat-
ellite will experience torques which tend to turn it into the position of stable
equilibrium,

Equations are given for the gravity gradient torques acting on the balloon,
about axes parallel to the geometric axes but which pass through the center of mass.
The moments of inertia of the balloon (including gravity rods) about center of mass
are Iyyx1, Iyyl, Izzl. The corresponding products of inertia are Iy gy, I,,1, and
Iyz1. During rod extension these moments of inertia will change with time., The
respective components of the gravity torque are:

_ 3K 2 2
Tgxl = 3 [e21be31b(Izzl'Iyy1)+Iyzl(e31b -€21b )+611be31b1xy1‘ellbezlblleJ

. 2 2
Toyl = 3% [el1be31b(lxxl'lzzl)+1xz1(e11b -€31b )+e11b921b1yz1-621b631b1xy1J (5.25)
R
T - 3K e e (1 -1 Y+ (e 2 .e 2)+e e I -e e I
gzl =7 [e116e21b(Tyy1-Tux1)¥Ixy1 (€216 -€116")¥€21be31bTx21"€11b¢31b1y21
R

K is the universal gravitational constant multiplied by the mass of the earth,
R is the geocentric distance calculated by the orbit subroutine,

The ej1p are the direction cosines of the local vertical unit vector T with respect
to the balloon axes.

5.1.4.2 Damper Torque on Balloon

Damping will be obtained by the relative motion of two concentric spheres which
are separated by a viscous fluid, When there is a difference in angular velocity,
there will be a viscous shearing action exerted on the fluid which results in a
dissipation of energy. 1In order to produce a difference in angular velocity of
the spheres and to be assured that they do not eventually "lock up'" on each other,
the inner sphere is fixed to the earth's field by the magnetic anchor. The torque
which is transmitted to the balloon thru the viscous coupling is a function of the
damping coefficient, b, and the relative angular velocities of the two spheres,

The following equations define the damping torque on the balloon:
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Taxr = -b( Wy - Winx1)
Tay1 = -b( Wyt - {*/myl) (5.26)
Tazl = -b( Wy = Wig1)

V) W , W_,1, are the components of the magnet body rates resolved along
mxl myl mzl ; . - )
the balloon” body axes. This resolution is defined by equation (5.18),

5.1.4.3 Solar Torques on Balloon

Solar torques arise from solar radiation pressure on the surfaces of a body.
This pressure is the result of bombardment of the surfaces by photons. The pressure
is exerted on both absorbing and reflecting surfaces., This program has the capa-
bility of computing solar torques on botn a solid and mesh lens shaped balloon.

The equations for the mesh balloon are a first approximation and do not consider

the thickness of the wires which make up the mesh satellite. However, the solar
torque resulting on the bottom surface as a result of the sun's rays passing through
open spaces on the top part of the lens is considered. It is felt that the present
definition of the mesh balloon is a good approximation. The equations to define

the torques on the i, j, k axes of a lens shaped balloon are given in Section 7.1.
These equations consider the sun to be always in the i, k plane which will not
necessarily be so, Therefore, a transformation is necessary to convert the torque
components Tj, Tj and Ty into components about the body axes. The following
equations express this transformation:

Tsx1 =

i
T . - Sp; + syl (5.27)
syl - T3
y sin® y sin@ Tk
—Tgp1 = 2y1 T, *+ 2zl Ty
sin®@ d sind
~/ 2 2
where sin © =\¢Syl + 5,17 (5.28)

when € = 0, Tgy]l = Tgz1 = O.

The offsets yy, 21, must also be expressed in terms of offsets, ¥10»> 210 along
the body axes. This transformation is

z1, ==(y108y1 *+ 210 Sz1)/sin® (5.29)
YL =—(y10szl - 219 syl)/sinQ

5.1.4.4 Effect of Earth's Shadow

If the vehicle is in the earth's shadow, all of the solar torques are zero. For
simplicity, all of the sun's rays are considered parallel, and the earth's shadow is
thus a cylinder. The shadow criterion is based on the relation between two unit
vectors, § in the direction of the sun's rays and T in the direction of the local




vertical, positive upward. The component of T in the direction of s is:
rg =T S = apfy; +appfyy +agsfys. (5.30)

If r, is zero or negative, the vehicle is in the half of the orbit toward the
sun and can not be in shadow. If rg is positive, the vehicle is in the half of.
the orbit away from the sun, and its being in the earth's shadow depends upon its
perpendicular distance R, from the earth-sun line.

Re = RT\/1 - ,_.SZ (5.31)

If Re is equal to or less than the earth's radius, .20902956 x 108 feet, then
the vehicle is in the earth's shadow. If R, is greater than the earth's radius,
the vehicle is not in the earth's shadow,

5.1.4.5 Magnetic Torque on Balloon Magnet

The balloon magnet will exert a magnetic restoring torque on the balloon which
is dependent on the magnet orientation in the balloon and the satellite's position
with respect to the earth's magnetic field. The magnetic restoring torque can be
written:

Ty = Mg (xy X'H) (5.32)

where'§é and W are vectors whose components are expressed in the r, p, q orbital
coordinate system;M, is the magnetic moment of the dipole expressed in appropriate
units. xp is the dipole axis of the magnet which is rigidly attached to the balloon.
This axis expressed in orbital coordinates is

3?2 = hll; + h123 + h13—q (5.33)

where h;. are the direction cosines of the dipole axis with respect to the r, p, q
axes, H is the earth's magnetic field intensity which is outputted from Dr. Frost's
subroutine to define the earth's magnetic field. Equation (5.16) defines the com-
ponents of the magnetic field in the orbital coordinate system. Therefore, equation
(5.32) may be written:

T =My | T ? q ]
hyq hy, hy3 (5.34)
H, Hp Hq
or B -
Tmr2 = My (hypHg - hy3Hp)
Tapz = M, (hygH, - hygH) (5.35)
quZ = M2 (h]-lHP - hjoHy)
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Tmx1 Tmr2
Tyl = [EJ Tip2 (5.36)
T T
Lmzld i m<;124

5.1.4.6 Miscellaneous Disturbance Torques on Balloon

For increased flexibility it is desired to have provision for periodic and
secular disturbance torques on the main body. The general expressions for the
body~axis components of these torques are:

Texy = T1 + T2 sin ( ult + 01) + T3 sin (u2t+¢2)
Teyr = T4 + T sin ( Wit + 93) + Tg sin ((Wot+h,) (5.37)
Tzl =T, + Tg sin ( LJlt + P5) + Tg sin ( L./2c+¢)6)

The Ti are torque amplitudes. The angular frequencies(*/l and sz may correspond
to the orbital rate or one of its harmonics or any other angular rates desired, The
phase angles @; provide increased flexibility.

The indicator 0 or 1 is used in the input data. If the indicator is 0, all of
the miscellaneous torques are zero and the Ti,(k/i and @; are not listed in the

input.

5.1.4.7 Magnetic Restoring Torque on Magnet

The independent magnet will also experience a restoring torque since the dipole
axis will tend to line up with its axis parallel to the magnetic field. This
torque can be written:

Tp3 = M3 (x3 X H) (5.38)

where M, is the magnetic moment of the dipole expressed in appropriate units. 'ié
is the %1p01e axis expressed in orbital coordinates; thus,

Xy e11mt + €120P + €13nd (5.39)

where e);, are the direction cosines between the dipole axis and the orbital axes
r, p, q. H is the magnetic field intensity which is defined by equatiomn (5.16).

Therefore,

Tpy = M3 T P q W
1lm  €12m ©13m (5.40)
H H H
L r P q
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or

Tmr3 = M3 (eIZqu €13m Hp)
Tmp3 = M3 (eq3qHy - e11q He) (5.41)
Tng3 = M3 (e11nflp - €12m Hr)

and
Tox3 Tar3
Tmys | = I.Em] Trp3 (5.42)
Tmz3 qu3

5.1.4.8 Damper Torque on Magnet

The damper torque on the magnet will be similar to that on the balloon. Except
that in this case, the torque is transmitted from the balloon through the viscous
coupling to the magnet. The damping torque 6n the magnet will be a function of
the damping coefficient, b, and the difference in angular velocities between the
magnet body axes and the components of the balloon angular velocity which are ex-
perienced along the magnet body axes. This transformation is defined in equation
(5.19). Thus, the damper torque on the magnet may be written:

Tax3 = b (Wyg - Wigs)

b (W - W py3) (5.43)

Tdy3

Tdaz3 -b ( L/z3 - LJsz)

5.1.4.9 Euler Rates

The dynamic equations needed to complete this simulation are the Euler angle
rate as a function of body rates:

épb =M+ — érb ( Wy sin eyp, + Wy cos o)
érb = Ljyl cosgyb -Lugl sin eyb
O = Way + (8, + 1) sin oy (5.44)
. .
me = -7? + ;;;_é____ ( LJyB sin Qym +-L/23 cos gym)
rm
érm = L/yB cos éym -.LJZ3 sin Oy,
Sym = Uixs + 8y + 1) sin 6, (5.45)

Each of these angular rates is numerically integrated by the IBM 7090 computer
to obtain the corresponding Euler angle,
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5.1.5 Digital Computer Program

The program for the IBM 7090 computer is a compilation of subroutines. Each of
these subroutines, as well as the input data, is described below.

5.1.5.1 Input Data

The input data are listed in Table 5.1. The units and a brief definition for
the parameters are included. A few brief remarks on some of the angles are in order.
The time of injection Dy is positive if measured after a winter solstice and nega-
tive if measured before the solstice. Greenwich mean time is zero at midnight. The
orbital inclination }/ is always positive. The orbital angular position 9 is mea-
sured from perigee in the direction of travel.'n 1, the orbital position at injection,
is measured from the ascending node.

Table 5.1 Input Table

Universal Constants

Symbol Units Description

€.(EPS) DEGREES Angle between ecliptic and equatorial planes

K (FKK) FEET3 / SECOND? Gravitational constant multiplied by earth mass .
E/C (EC) POUNDS/FOOT2 Solar pressure constant ‘

Orbital Parameters

DL DAYS Time from winter solstice to orbital injection

APOG FEET Geocentric distance at apogee

PERI FEET Geocentric distance at perigee

GMT HOURS Greenwich mean time at injection

V (FNU) DEGREES Inclination of orbital plane, with respect

to equatorial plane

.nz(ETAZ) DEGREES Vehicle orbital position angle at injection
measured from perigee

Tzl(ETAl) DEGREES Vehicle orbital position angle at injection :
measured from the ascending node

L2 DEGREES Right ascension

Re FEET Radius of earth

71 DAYS Regression Period
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Table 5.1 Continued

Symbol

Units

Descrigtion

Initial Conditions

.73593E-7 POLE CM,
.73593E-7 POLE CM,

SLUG-FT2

SLUG-FT2/SEC

SLUG-FT

gpbo DEGREES Initial value of Qpb
8rbo ! " 9rb
n "
eybo 1" " gyb
pmo " " pm
©rmo Orm
gymo " " gym
k10 DEGREES/ SECONDS Initial value of L/,
(W] 10 " " uyl
L_/Zlo " " L/ 1
L/ 30 n 11 (jB
Ux30 1] " fo3
L/Z3o " " Lj23
Vehicle Characteristics
/3 DEGREES Angle to define position of rigid magnet
DEGREES Angle to define position of rigid magnet
2( DEGREES Complement of lens half angle
Lo FEET Radius of sphere of which the lens is a segment
K1 — Constant to define ratio of "open area' in
mesh skin
' s Specular reflection coefficient for lens
;)d Diffuse reflection coefficient for lens
b #FT, SEC. Damping Coefficient

Magnetic moment of balloon magnet dipole
Magnetic moment of independent magnet dipole

Initial moments of inertia of balloon

Initial rate of the balloon moments of inertia

Moments of inertia of independent magnet
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Table 5.1 Continued

Symbol Units Description

XL, FEET Offset of balloon c.g. from '"circular"
center of top lens

x'L FEET Offset of balloon c.g. from "circular"
center of bottom lens

¥10 FEET Offset of balloon c.g. along y; from
geometric center of balloon

210 FEET Offset of balloon c.g. along z; from
geometric center of balloon

Numerical Integration Parameters and Other Indicators

Sets 6, 7, 8 in Table 5.2

Miscellaneous Torque Constants

Tl, T2, T3,
T4, Ts, Te
T7, Tgs Tg

W,W,
(Omega 1,
Omega 2)

Py, D9, 03
04, 05, Dg
(Phi 1, etc.)

POUND-FEET Coefficients of miscellaneous
disturbance torques

DEGREES/ SECOND Angular frequencies of miscellaneous
disturbance torques

DEGREES Phase angles of miscellaneous torques

Following is a description and input format (table 5.2) to this FORTRAN program
with variable field input. Each set begins on a new card with a field specification
in column 1, each field is separated by commas, Each data card requires an asterisk
at or before column 72; this does not include the title card.

Format

Table 5.2 Input
SET | FIELD
1
*2 F
3 F
4 F
5 F

SPECIFICATION

F & G tables (standard)

EPS, FKK, EC

DL, APOG, PERI, GMT, FNU, ETA2, ETAl, OMEGA, TAUR

THPB, THRB, THYB, THPM, THRM, THYM, Wx1, Wy1, Wz, W x3,Wy3, W z3
BETA, GAM, PHI, RHOS, RHOD, R, FKKl, RE ,

BB, FIXX1, FIYYl, FIzzl, FIXYl, FIXZl, FIYZl, FIXX1D, FIYYLD,

FIZZ1D, FIXY1D, FIXZ1D, FIYZ1D, FIXX3, FIYY3, FIZz3, FIXY3,

FIXZ3, FIYZ3, XL, XPL, Y10, Z10, FM2, FM3
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Table 5.2 Continued

SET |FIELD SPECIFICATION
6 F GDSTPS, DT, TSTOP, DTPRNT
X INTRVL, MISC

7 X NERR

NERR 2 0

8A F ERMN1, ERMX1, ERMN2, ERMX2, ERMN3, ERMX3, ERMN4, ERMX4, ERMNS,
ERMX5

NERR £ 0

8B F EMAX(1), EMIN(1), EMAX(2), EMIN(2)...EMAX(12), EMIN(12)

MISC (SET 6) # O

9 F T1, T2, T3, T4, T5, 76, T7, T8, T9, W1, W2, PHl, PH2, PH3, PH4,
PH5, PH6

If MISC = 0, no SET 9 is required. Any number of complete groups of SET 2-9 may
be run at one time,

An Adams-Moulton method of numerical integration with Runge Kutta starter
is used. SET 6, 7 and 8 are integration controls., These controls provide for
application of error criteria to determine whether the integration interval is
satisfactory. The criteria are applied separately to each integrated variable,
as described below. If the integration interval is satisfactory with respect to
all variables, the program proceeds with the integration. After the number of con-
secutive satisfactory integration intervals reaches the number GDSTPS specified
in the input the program tentatively doubles the integration interval. If the
larger interval is satisfactory, the program proceeds with the integration. If
at any time the integration interval is found to be unsatisfactory with respect to
one or more variables, the program will halve the integration interval until it
is found to be satisfactory with respect to all variables. DI is the initial step
size in seconds. TSTOP is the number of seconds real time for the run. DIPRNT is
the real time print interval. INTRVL is O for constant DT and 1 for a variable
step size. MISC is O for no miscellaneous disturbance torques and 1 for non-zero
miscellaneous torques. NERR is the type of error criteria desired.

In set 8 the ERMN's refer to a minimum absolute error. If all the estimated
errors are less than the ERMN the step size is doubled. The ERMX's refer to the
maximum allowable error. If any single error is larger than the appropriate ERMX the
step size is halved.

In set 8A:

ERMN1 refer to ®pb> Orbs Oybs Opms Orms Oym
ERMX1
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refer to ijl’L4§1

refer to (A/XS,(A/Y3

(./
refer to 23

ERMNB} refer to Lle

In Set 8B, the error criteria refer to the integration variables in the following
order: pr, Grb, be, "“‘pm, Qrm, Qym,le,uyl,(-\/zl,ux3,(.s/y3,uz3 ,

5.1.5.2 Subroutine for Changing Moments of Inertia

Provision has been made in the program for changing moments and produets of
inertia for the balloon during rod extension, balloon ablation, or any other time
during which the moments of inertia are changing. The inputs to this program are
the initial moments and products of inertia as well as the initial rates of these
same parameters. Since the time history of these moments and products of inertia
will depend on the vehicle configuration, this subroutine is not in the program.

At present the program treats the initial moments and products of inertia as constants
for the entire duration of the run, Note, no provision has been made for time
varying moments and products of inertia for the magnet.

5.1.5.3 1Initialization Subroutine for Orbital Parameters

This subroutine computes additional orbital parameters from those listed in
the input and from the constants K and € . The semimajor axis a and the eccentricity
e are computed from the apOgee and the perigee,

a = % (APOG + PERI) (feet), (5.46)
e = APOG - PERI (5.47)
APOG + PERIL

The angular momentum per unit mass is:

hy = Vka (1 - e2) (feet?/second), (5.48)
The orbital period is

T = 27T 34 % (seconds). (5.49)

The orbital angle at perigee, measured from the ascending node, is:

7?0 =-n1 -TQ (radians). (5.50)
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The eccentric anomaly at injection, Ey, is found from:

e + cos \
cos Ej = 712 (5.51)
1+ e costz
The quadrant of E; can be determined from Table 5.3, using the value of 722.
The mean anomaly at injection time is
M, = E, -e sin E, (radians). (5.52)
The time at injection is
Mo T
ty = ,_2,07‘___ (seconds). (5.53)
Table 5.3 Relation Between E, and7?2
12 E,
(Radians) (Radians)
0 0
-1
Z cos (e)
2
cos~1 (-e) 77
2
cos™! (-e) 37
2 —
341 cos'%@)
2
27 27

5.1.5.4 Earth's Orbital Position

This subroutine must be computed initially and thereafter when the Greenwich
Mean Time is zero. At this time, Dy will be incremented by one day. The decision
to increment Dy will come from the subroutine for the computation of latitude and
longitude.

The earth's orbit is considered to be circular, and therefore, its orbital
position(J is a linear function of time

27D
g = _36:57—5%:_ - Z'T;DL (radians) (5.54)
R

where TR is the regression period in days. 1If TR> 1000 then d= ZTrDL ,
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Both Cr and D. are measured from the winter solstice, are positive after the
solstice and are negative before the solstice,

Cfl is the projection into the equatorial plane of the earth's orbital position
angle

sin C 1 sind

\/cos2 € coszkf'+ sinch

cos U cos €
cos2 € cos2(’ + sin?2(

(5.55)

"

CoSs Ol

5.1.5.5 Subroutine for Computation of Latitude and Longitude

This subroutine which is necessary to provide input to the magnetic field sub-
routine, must be calculated for each time step. The latitude which is a function
of inclination and orbital angle can be written:

LAT = sin! [ sin 71 sin L}} (5.56)

LAT can vary between + 90° and the sign will be determined by the sign of
the argument.

The angle which the Greenwich Meridian makes with the u axis is a function
of the time of year, Greenwich Mean Time at injection and orbital time.

Therefore,
Q=0 -T/2 + 7/12 GMIT (5.57)
where GMIT = GMT + t_-to | (5.58)

3600

a is the projection of the earth's orbital position into the equatorial plane,
GMT is the Greenwich Mean Time at injection and t, is the time measured from perigee
at injection in seconds. When GMIT reaches 24 hours,D; should be incremented by
one day and GMIT set equal to zero. Thereafter, Dj should be incremented every
twenty four hours and GMIT reduced to zero.

The longitude of the satellite at any point may be written:
LONG = {1 -0 +(5 (5.59)

where.(23 is the projection of the orbit central angle measured from the equatorial
crossing onto the equator. It is calculated from the following equations:

sin{l3 = tan IAT
tan '}/
(5.60)
cos )3 = cos
cos LAT




5.1,5.6 - Orbital Subroutine

This subroutine is known as ELLIP, It receives the inputs from the initialization
subroutine listed in Table 5.4.

Table 5.4 Inputs to ELLIP

SYMBOL UNITS DESCRIPTION
JQ-(OMEG) Radians Right ascension of the ascending node.
a (SMA) Feet Semima jor axis of orbit.
€ (BCC) Eccentricity of orbit.
h_ (ALTB) Feet?/Second Orbital angular momentum per unit mass.
79 (TAU) Seconds Orbital period,
7?0 (ETAO) Radians Orbital angular position at perigee, measured
from ascending node.

If the eccentricity e is zero, the program computes the circular orbital
parameters only once.

.

R =0, (5.61)
R =a (feet) (5.62)
and i% .
= E%w (radians/second), (5.63)

For each time interval of integration, the program computes the mean anomaly,

M = 27t (radians), (5.64)
T

the eccentric anomaly,

E=M (radians), (5.65)
the orbital angle measured from perigee,

72 -720 = E (radians), (5.66)
and the orbital angle measured from the ascending node,

N=(N-Ny +7N, (radians). (5.67)
If the eccentricity is not zero, the variables pertaining to the elliptical

orbit are calculated at each integration interval. The mean anomaly is calculated
from equation (5.64) and then reduced by multiples of 27, as required. The eccentric

anomaly E is calculated from Kepler's equation,

E - e sin E = M (radians). (5.68)
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table of values of M for values of E at one- degree 1ntervals To solve equation
(5.68) the program enters the table with the value of M and interpolates to obtain
E. The quadrant of E may be found from Table 5.5, using the value of M. The
geocentric distance is:

R=a (1l - e cos E) (feet) (5.69)

The orbital angle (Tl -TZ ) measured from perigee 1s calculate - from:

cos (T( T( ) = —91?'—?1—:-—6— 5.70)

- ¢ cos E

The quadrant of (7Z n ) is found from Table 5.5, using the value of E. The
orbital angular position is found from equation (5 67). The radial velocity is:

r= & o Sl; (Tz‘no) = ehosinkE feet/second) (5.71)
a(l - e?) a\/1l - e“(l - e cos E)

The orbital angular rate is found from equation (5.63).

Table 5.5 Relations Between M, R, E, and (7} -TIO_Z

M R E M-y
(Radians) a (Radians) (Radlansg
0 1l -e 0 0

cosle - 1 - e? 1 - e? cos™le V4
2
N 1 V4 cos™1l (-e)
2 2
T 1 +e 7.// 7
B_ZZ + e 1 _2_/_7 cos.1 (-e)
cos™!l e - e\;l - 2 1-e2 cos™le 2—7
27 1-e 27 2
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5.1.5.7 Derivative Subroutine

This subroutine, which is titled DERIV, calculates the coordinate transformations
and the twelve time derivatives. These derivatives include the angular accelerations
about the body geometric axes and the Euler angular rates.




5.1.5.8 External Torque Subroutine

A subroutine is used for each kind torque acting on each of the bodies. For
example, there are five torque subroutines for the balloon: gravity gradient torques,
damper torques, solar radiation pressure torques, magnetic torques and miscellaneous
disturbance torques. Only two of these are applicable for the magnet: magnetic
and damper torques. The total torque components (torques resolved along body geo-
metric axes) are the algebraic sums of the various individual torque components
for the balloon:

Tyl = Tgxl + Tax1 + Texl + Tmxl + Tex1

Tyl = Tgyl + Tdyl + TSyl + Tmyl + Ttyl (5.72)

Tz1 = Tgz1 + Taz1 + Tsz1 + Thz1 + Tzl

For the magnet:

Tx3 = Tmx3 + Tax3

T =T + T
v3 my3 dy3 (5.73)

T23 = Tpz3 + Taz3

Other torque subroutines can be easily added to the program,

5.1.5,9 Output Subroutine and Plotting Option

Most of the required output is available from the computations performed by
the various subroutines. Additional required output data are described next.

The elapsed time t,,  since injection is printed~out to the nearest tenth of
an hour.
t -t
t = ___0 5.74
out 37600 ( )
The angle[& between the satellite yaw axis and the local vertical to earth may be
calculated:
Z& = cos~1l (cos 8pp cos ©rb) (5.75)

The angle © between the sun's rays and the longitudinal axis of the balloon lies
between zero and 180 degrees and is computed from

© = cos~! (sxl) (5.76)

The angle o{ between the Y1 axis of the balloon and the normal (j axis) to the plane
containing the sun is

K = cos-l -8, = sin"l —Syl (5.77)

N5 Z4eZ , 2
5;17¥8y1? s;1%+ Sy1
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Two pages are available. On page 1, t , 8 8.15 Syb> © e e
; : t b> “rb pm> Zrm> Sym>
( Wx1s-Wmx1),( Wyl- Wmy1), ( Lzl -LAnzlguand . Page 2 is stored on B6 and
printed on request. It contains: tout> B, Hy, , Hgs 8, 5 Tex1s Tsyls Tezls
LAT and LONG. A binary tape A5 is written for plotting which contains all the
information on pages 1 and 2 with the exception of latitude and longitude.

When the elapsed time (t - tg) in seconds exceeds the value TSTOP specified
in the input, the computation stops. The machine operator may also be instructed
to stop the run after a certain amount of computer running time.

The print-out interval DIPRNT is also specified in the input. The print-out
will seldom occur at exact multiples of the specified interval but will occur at
the end of the next integration interval. This slight defect occurs because the
specified print-out interval is usually not a multiple of the integration intervals
on account of the variable integration intervals,




A5.2 RESULTS OF PRELIMINARY STUDIES

The optimum parameters selected for poles (Section 4.) result in a time
constant of forty orbits, and a steady state magnetically induced error of one-
half degree. To determine the validity of the planar analysis, the optimum parameters
were put into the three axis computer program and the performance checked. Figure
5-7 is the graph of the computer results with the optimum parameters. The initial
error in pitch 1is ten degrees and with a time constant of forty orbits, the error
after 112 hours should be 3.7 degrees. The actual error is approximately 4.1
degrees indicating a time constant of 45 orbits. The discrdépancy between the pre-
dicted value and the actual value is primarily due to the damper induced distur-
bance at the small angles. This is evident in Figure 5-7 by the presence of small
fluctuations on the decay curve. The nature of the fluctuations is illustrated in
Figure 5-8. This is a steady state run, with all the fluctuations the result of
damper induced disturbances. The estimated steady state error was one-half degree
and the system remains within that angle for the majority of its life. The occasional
six tenths of a degree is caused by the beating of satellite natural frequency and
the magnetic disturbance. This effect decays and is disappearing by the end of the
run. A twenty four hour cycle is noticeable on roll and yaw due to the rotation
of the earth. The magnetic influence on roll is, however, small.

The optimization analysis wascalinearized analysis, and decay from large
initial angles had to be checked using the three axis computer program. Figure
5-9 is such a run with initial angles of 45 degrees. The decay time for pitch is
32.5 orbits, as is the decay time for roll. This value is considerably less than
the predicted and is due primarily to the non-linear behavior of the satellite at
large angles. Note that yaw, with an initial angle of zero, makes eight complete
revolutions before the end of the run.

To determine the effect of solar pressure upon the satellite, an orbit was
selected with the sun in the orbit plane and the vehicle was given on initial
error. This computer run is shown on Figure 5-10 and comparison with Figure 5-7
indicates little difference.

Figures 5-11 and 5-12 show the steady state response to solar torques with
the sun normal to the orbit plane and 45 degrees to the orbit plane, respectively.
When the sun is normal to the plane, there are no solar torques on pitch, and
since the vehicle is symmetrical with no center of mass offset, the:solar torques
on roll are small. The oscillations in roll are primarily the result of damper
induced disturbances. With the sun at 45 degrees (Figure 5-12), the satellite is
in the earth's shadow for a short period of time, which causes a periodic disturbance
on the satellite. The greatest effect is in roll, where the steady state error
increased from .25 degrees (Figure 5-11) to .6 degrees. The amplitude of oscillation
of pitch did not increase), ‘but the characteristics of the oscillations have changed.
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Figures 5-13 and 5-14 illustrate the steady state behavior of the vehicle for
for a 30 degree and 48 degree inclined orbit, respectively. (Please note the
change in pitch and roll scales in Figure 5-14). The sun would be 45 degrees to
the orbit plane if the orbit were polar. For both inclinations the oscillation
amplitude in roll has increased beyond those for the polar orbit at the same sun
angle. The oscillations in pitch have, however, decreased.

The effect of orbit eccentricity also had to be checked and Figure 5-15 shows the
vehicle steady state performance in an eccentric orbit. The sun is normal to the
orbit plane. After one time constant the satellite oscillates at orbital frequency
(as anticipated) with an oscillation amplitude of 2.1 degrees. The error due to
eccentricity alone (Figure 4-4) is 1.5 degrees. The damper induced error is .5
degrees. The effect of solar torque is therefore, small, as indicated previously.

Figure 5-16 illustrates the effect of solar torque and eccentricity upon trans-
ient decay time. When compared with Figure 5-9 there is little difference. After
240 hours the vehicle is oscillating at orbital frequency with a five degree
amplitude. The motion is still decaying.

The results of these preliminary three axis runs indicate that the performance
of the system is as anticipated. The computer program that is required for large
angle three axis motion studies is operational, providing the capability for more
detail include: orientation during rod extension and balloon deployment; error
decay from large error with disturbance torques imposed; and steady state oscill-
ations produced by the combined effects of thermal bending of the rods, orbit
eccentricity, earth's magnetic field and solar pressure.
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6.0 DAMPER DESIGN ANALYSIS
6.1 MAGNETIC MATERIAL SELECTION

An analysis of permanent magnet materials obtained from several manufacturers
indicated that Cast Alnico 5DG with its high B at peak energy would give the highest
magnetic moment per unit mass of material. This material has been tentatively
selected for the horseshoe magnets and the bar magnets.

To minimize the amount of bismuth in the outer shell and lower the weight
of the supporting structure needed to withstand launch, it is desirable to have
the inner sphere neutrally bouyant. This can be achieved by using a cylindrical
magnet of approximately 4:1 ratio of length to diameter. This configuration pro-
vides a good magnetic moment, and permits the inner sphere to be of sufficient
diameter to achieve neutrally bouyancy, even after addition of the extra retaining
magnets and shell structure.
6.2 WEIGHT ESTIMATES

The weight of the inner sphere for neutral bouyancy is

T

Wes = % 13 dg (6.1)

where dy - density of fluid
1, - length of magnet

m

The equation for magnetic moment is

BA
M=282 okl . (6.2)
s Tl :
where B - flux density
k - 'ratio of pole length to actual length

A, - Area of magnet

magnet length equal to 4 times the magnet diameter,

A= m (6.3)
64
and 3
M = bklm (6.4)
256
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Solving for 1 and substituting into Equation 6.1

the

we =T1df 256 M (6.
6 Bk
= 134 df
Bk '
for dg = .97 dynes/cm2
B = 11,000 dynes/cm2
k = 0.7
Wt = .01l69 M gr.
= 37.2 Mx 1076 1bs. (6.

5)

6)

7)

An assumption of 1/30 the radius of the sphere for thickness of Bismuth and

same for a supporting structure gives an external shell weight of
Weo = TT(Lp + %%b2 Im 4y, +7T(ly + 310 )2 Im (6.
60 60 60 9L
where
dbi = Density of Bismuth = 9.75 gr/cc
da; = Demsity of Aluminum = 2.7 gr/cc
Hence
Wiy = 686 13 gr (6

From Equation (6.4)

m3=§-§M
bk = .0227 M (6
And
Wey = .0235 M gr (6.
= 50 M x 10-6  1bs. (6.

The total weight of the damper component can then be estimated to

10 percent accuracy by combining equations (6.6) and (6.10)

76

6

Total Weight = 87.2 M x 107" 1bs,

8)

.9)

.10)

11)
12)

better than



The above calculations are conservative. A decrease in length to diameter
ratio of the magnet in the inner sphere, would decrease the weight by nearly the
square in the change of that ratio. Tests of actual magnets in a shell of bis~
muth would indicate the minimum thickness required. The band of weight vs. magnet
strength shown in Figure 4-5 takes into account the uncertainty in required bis-

muth.
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7.0

7.
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1

SUN PRESSURE TORQUES

Solar torques arise from solar radiation pressure on the surfaces of a
body. This pressure is the result of bombardment of the surfaces by photons.
The pressure is exerted on both absorbing and reflecting surfaces.

If an elementary surface area dA is exposed to sunlight, the force exerted
by the photons striking the surface is

d%F=poda [ TA-P) -+ p 5 --n)z] (7.1)

The ratio of the solar power flux density to the velocity of light (Po=E/c)
is the pressure exerted on a perfectly absorbing surface normal to the incident
radiation. At earth's distance from the sun this is 4.62 x 10~ dynes per square
centimeter or 9.65 x 10-8 pounds per square foot. The first term in the brackets
is the contribution due to absorption, and the second term is that due to re~-
flection., S is a unit vector in the direction of propagation of the radiation.
F is a unit vector perpendicular to the surface and positive inward. (The ra-
diation impingc: on the "outer" side of the surface.) The quantity (¥ . W) is
the cosine of t < angle of incidence. It is seen that the absorption contribu-
tion is along the incident ray and that the reflection contribution is along
the normal into the surface. Both terms have a cosine factor (s . n) because
the projected area normal to the radiation is this cosine factor times the area
dA. The reflection term has a factor 2 and a second cosine factor, These arise
from taking the resultant of the forces due to the incident and reflected rays.
In practical problems, all of the sun's rays at the satellite are assumed to be
parallel, although the sun actually subtends about a half of a degree at 1 a.u.

“n analyzing the attitude dynamics of a satellite or any other body, the . -
torques about some particular center of rotation are of primary interest. The '
center of rotation generally has an arbitrary location with respect to any sur-
face under consideration., Therefore, the calculation of the solar torques on
the body, due to solar radiation on one of the body surfaces requires expres-
sion of the vector moment arm from the arbitrary location of the center of rgo-
tation to each element dA of the surface. If this moment arm is designated h,
then the, solar torque due to a surface is the integral of the vector cross-
product h X d°F over the portion of the surface illuminated by the solar radia-
tion.

TWO DIMENSIONAL SKIN

Equations are derived for a two dimensional skin which neglect wire thick-
ness; these equations are a first approximation to the much more complicated
three dimensional equations. Figure 771 shows the coordinate system which was
used to describe the POLES satellite for this analysis. The righthanded system
of coordinates i, j, k is defined such that the sun is instantaneously in the
i,k plane, The angle which the sun makes with the 1 axis is @ where 02 <180,
The i axis is along the longitudinal axis of the balloon and directed as shown
in the figure. The lens was assumed to be composed of portions of two spheres
whose centers are 0 and 0' and whose radius is rp. @ is the measured from the
horizontal to the edge of the lens; thus, the lens central angle is 2(90-¢)

is the integration variable along a "latitude" line of the sphere and
along a "longitude" line. M is a vector normal to the surface which is directed
toward the center.
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It can be seen that the sun vector is

S =cos 01-sin® k (7.2)
and the normal to the surface of the sphere is

F=sin/\_i--sin¥/ cos/\ .E-cosw cosk “ (7.3)
The elementary surface area is

dA = ry? cos A dA 4 w (7.4)

When no shadows exist, the iluminated surface is defined by -7 < l//S 7
and < 157//2 . However, when the sun makes a certain angle (8 > ¢) with
the T axes, shadow will occur along two straight lines which are perpendicular
to the sun vector. Along these lines,

s .n=0 (7.5)
Therefore,
cos O sin /\ + sin @ cos w cosA =0 (7.6)

If ')Z/( is defined as the angle at which the shadow occurs then, the sun-
shadow line will be defined by

cos Wc = - tan /\ (7.7)

tan ©
A system of offsets must be defined such that the torques can be computed
about any arbitrary point. Since the torques are computed about two spherical
centers, two sets of offsets, %1 , y; . z;, and x}, , y{, z{ , are necessary.
If xo is the distance along the i axis from the geometrical center to the
arbitrary center of torque (positive toward O in Figure 7.1) then

XL, = - 1, sin@ + x, (7.8)

X, = r, sin 0 + x4 (7.9
yp and y} are offsets along the j axis and will be equal since the two
spherical centers are along the i axis., Similiar reasoning follows for zp and
zf,, the offsets along the k axis. Therefore, only the offsets xj, xI'J » ¥1, and
z;, will be considered. The moment arm from the point around which the torques
are computed to dA for the spherical segment, 0, is
P N

h = i(-rO sink -X1) + j(ro cos.l sinw- yL)+k (rocos/\ cos(%/-zL) (7.10)

For the spherical segment, 0', the corresponding moment arm is
—

h' =i(-r, sinA - X,L')+j(rocos)k sinl,l' - yp) +k(r,cos /\cosl,U- z;) (7.11)

The element of torque about the arbitrary point, due to solar flux on dA, is

- e —
d?r - h X d2F (7.12)
and d2T' = h' X d2F (7.13)

for the two spherical segments.




Thus far, in the discussion no mention has been made of the material which the
balloon is made of, If the material is solid, then the previous discussion is
sufficient and the equations may be integrated as they stand. However, if the ma-
terial is a mesh type substance, further definition is necessary.

As a first approximation, the mesh is considered to be square and of negligible
thickness. The percentage of the closed area is estimated. This percentage, Ky,
is assumed to be the percentage of the torque on the surface of the balloon toward
the sun which is experienced by the balloon. Since the surface is partly open
(1 - Ky) of the sun's rays will fall on the inside of the balloon. Of these rays,
Ky of them will cause torque on the balloon. Therefore, a factor of Kj(1 - Ky) is
applied to torques on the inside of the balloon.

The derivation of K] may be seen from the following illustration.

i

- - -

—a,,—

where a, is the width of the wire and Ti is the distance from the center of one
wire to the center of the next wire, The area of the solid material is

7'1(2 a, = T1). The area of the total square is ay
Then K; = 11(2a, - T1) (7.14)
5 ,
a-r

but 2 av>>T1, and

k=211 (7.15)
a
For example,vif T& = .00l and a, =.1, then Ky = .02 or 2% of the balloon is solid
material,

The derivation of the force equation assumes that s . is positive which is to
say that the sun looks into the surface as does the normal. For a porous inner ‘surface,
the normal must then be directed away from the center of the sphere or the force
equation must be redefined such that the terms containing odd powers of n are

switched in sign. Therefore, the new force equation becomes
—

PF = b [5G W P+ 2P, G- -2PiE 2 (7.16)
3

where the subscript o will be used to distinguish this special case.
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The following table shows the integration limits, mesh coefficient and force
equation to be used for the four ranges of sun angle 8. Case I and IV represent
no shadow condition while the balloon is partly in shadow for cases II and III.

[
Table 7.1 Integration Limits for dZT
77

Case Term ; (*) l// /\ Center Mesh Force
Coefficient Equation
I 1| Otod +7 | D to?2 0 Ky d%F
2 +7 -7/2 to ~p |0 Kj(1-Ky) | d%F,
11 1| otow2 +7 | @ to?/2 0 Ky d2F
2 iV, | otoe 0 Ky d%r
3 Y. | - to-p o' Ky d2¥
4 ¥ | -7/2to-e |0 Ry (1-Ky) | d2F,
111 1 | 72 tow-p | + -2 to-(7-8}0" K1 d%F
2 W, | -a-e)to-p |o Ky a2f
3 Hle |0t 7-0 0 Ky d2F
4 ih, 7 -eto7/2 |0 Ky (1-K,) d%F,
v 1 |7-pto 7 +7 | -7/2 to-p |0 K, d°F
2 To7 |9/ tom2 |0 K (1-Ky) | d&2F,

It is only necessary to consider O £ @ ST since the integration in the plane
perpendicular to © includes + 77 if no shadow exists or + w if a shadow exists
where l/;c defines the sun-shadow line. -

Following is a summary of the torque equations which have been obtained by
combining and integrating the equations defined in this section.

Intermediate functions:

Fy = sin © cos © cos? ¢ (1 - sin? ¢,Ds) (7.17)
P, = 2/9 P4 sin 0(2 - 3 sin @ + sin §) (7.18)
F3 = cos? © cos2 ¢ + ’21;103 cos2 @(2 cos?2 @ -3 cos26 cos2@ + cos2@) (7.19)
F, = 4/9 4 cos 8 (1 - sin? @) (7.20)
Fg = sine[%, -sin~1 (:—i%—g—)- sin ¢'{sin29 - sin2¢-cosecosz¢(1-sin2¢ps)cos'l(cotetan¢)
-pssin @ (2/3 - sin? @ +% ﬂ;g ) VSinz 0 - sin’g ] (7.21)
sin“®
F6= %,Ddsine [~2cos‘1(-§§—:—3)+(3-sin2¢)sin¢ cos"l(cotetanQ)—-:—i—r%;-gcosem ]

(7.22)
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F,=7 sinbcoseeos2g(1-sin2g;) - %pdrsinesin¢(3-sin2¢)+ %)Od*yr sind (7.23)
Fg= - (1-K;)Wsin0 [cos39(l-sin29ps)- 3+ %pd sin9(3-sin29)] | (7.24)
F9= cos@ [—g -sin'l(%::gi) -sin@y sinze-sinza-cosecosz(bcos‘l(cotetanQ!)] (7.25)
+/Ds [ %eosgsin¢cos2¢ Vsin20-sinZ¢ - —;cosz(b (cosz¢-3coszecos2¢ +2cosze)cos‘1(cot9tan¢)]

(7.26)
F?O= Tecos2@cosler %Wﬂs cosz¢(cosza-3005290032¢+200329)+% pdﬂ‘cose(l—sin3¢)

) (7.27)
Fiq= -7(1-K1)cose [cos39(1 + %ps sinze) - %pd(l-sin39)] (7.28)
F12= ~{1-K1)731n9 [cos39(1-sin29ps) + %pd - -‘;:pd sin9(3-sin29) ] (7.29)
Fia= -(i-K,)7 cos® [cos39(1 + %ﬂs s1in20) +-;f pd (1 - sin39)] (7.30)

Torqiuz Equa=ions:

T; = Ky (2 - K3 Porg2yp T (Fp + Fy) (7.31)
Ty = Ky (2 - K. Por 2y, 7 (Fy + Fy) (7.32)
T, = -K12P0r0377(1 -,Os)sin (0] c0820 sin © cos @

-K; P r 2 VEXL + xp,'-Kyxy ") (F+ Fo)+(2-Kp) (F3 + F4)ZL] (7.33)

Case II: @¢<o S 900

T; = KyPor 2y, (2 F5 + Fy - Fpp) (7.34)

L 2 '
Tk = K Por0 Y, (2 F9 + F10 - F13) (7.35)

1

Tj = -KlPoro3 1 -ps)sinecose [sin¢cos2¢ -sinecosze(l-Kl)]
-K1P r 2 [ (x, + x.') Fg + (xq - x1") Fg + xFy - x;' Fy,
+ 2z Fg+ 2 F) o - 21Fy3 | (7.36)
Case III 90°< O <7 - ¢ .
Tj = KyP ¥ %y; (2 Fg + Fy + Fy) (7.37)
T, = KiP r 2y; (2 Fg + Fyg + Fyp) (7.38)
Tj = -K1P0r037f (1 -[)S) sin © cos 6 [ sin @ cos2@ -sin QCOSZG(l-Kl)]

-Klporoz [ (%, + xL') Fg + (%, - xL')F6 + xiF7 + x;Fg
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Case IV: 7- @ Se <77

T, = Kj(2 - Kp) Porfy, 77 (-F + Fp) (7.40)
T, = K (2 - K)) P.r %y W (-F3 + Fy) (7.41)
Tj = -Klz Poro32/(1 -/)S) sin ¢cos2®sin9cose

_KlPoro2 7’[(XL + xL' -Ky xL)(—F1 +.'F2 )+(2-K1)(-F3 + Fy )?L} (7.42)

The preceding equations were programmed sepafﬁtely so that solar torques could
be easily evaluated as a function of sun angle for set vehicle configurations.
Figures 7-2, 7-3, 7T-4: show solar torque versus sun angle for s = :65,Mg = .05
and mesh coefficients of 100%, 5% and 2%. Both symmetric and unsymmetric satellites
are included.

7.2 THREE DIMENSIONAL SKIN

The preceding analysis considered solar torques on mesh wires whose surfaces
are parallel to the spherical surfaces. These wires were considered to be of neg-
lible thickness. Appendix III contains the derivation of the solar torques on the
radial areas of a mesh satellite composed of square cross-sectional wires. There-
fore the total solar torque on a mesh satellite with square cross-sectional wires
is the sum of the solar torques on the parallel and radial surfaces. At present,
the equations contained in Appendix III have not been programmed .
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8.0. EDDY CURRENT TORQUES

This analysis pertains to an investigation of the torques due to eddy currents
of a lenticular balloon satellite in orbit. The balloon is composed of a large
lens-shaped wire mesh. This conducting material is in motion in the magnetic field
of the earth; therefore, eddy currents will be induced into the material. The eddy
current loops produce a magnet moment which interacts with the earth's magnetic
field, producing a torque on the satellite. We shall try to give a good estimate
of the magnitude and frequency of this torque for the worst possible case. Two
cases will be considered as an approximation: (a) a circular wire loop and (b) a
thin conducting disc.

Faraday's Law states that the induced emf around a closed path is equal to
the negative rate of change of flux through the loop. (reference 2, 3 and 4)

- ésp (8.1)

&

dt
- Y
=|B-dS (8.2)
area enclosed by loop
where: é: = emf produced in loop (volts)
= magnetic flux through the loop (webers)
B = flux density (webers/M2)

Equation (8.1) considers only the emf due to a flux change and does not take into
account the motion of a conductor such as a straight wire moving in a constant mag-
netic field. This motional emf is correctly given by

Y Y -
E =-|B - v x dl, (8.3)

where: f& = velocity of the element of wire

dl, = element of wire

We shall show immediately that the emf produced by equation (8.3) is zero for
the case of a rigid wire loop moving in a uniform magnetic field. (Uniform field
means that the instantaneous value of the field is the same at all parts of the
circuit.) The motion considered is that of translation only.

The dot and the cross in equation (8.3) may be interchanged to give
'y - -
E =-PBX v, - dl,

- -
and since B and v, are constant vectors during the integrationm, they may be taken
outside of the integral, giving

- Y -—
E =-BxXv, - a1,




Y
But dl, =0 for a closed loop, hence
é; = 0 for translational motion.

From now on we' concern ourselves only with the emf produced by equations (8.1) and
(8.2).

The magnetic field of the earth may be approximated by a dipole. The descrip-
tion of a dipole field is

H=%§[2cos§ -r.+sin§§] (8.4)

where: H is the magnetic field intensity (amp/m),'? and §~are unit vectors and
the coordinates r (geocentric radius) and §‘(polar angle) are shown in
Figure 8-1.

Figure 8-1;

Description of Dipole Field

is the strength of the earth's magnetic dipole and is equal to, cf
( q
reference 5),

Mg = 6.43 x 102! amp - meter? (8.5)
The satellite is oriented so as to always point down along the local vertical.

A circular loop of wire, or a disc, is in a circular orbit as in Figure 8-2, °
and we wish to find the torque due to eddy currents on the wire and disc respectively,

=+ I<
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-
r

Eddy Currents

Dipole

Figure 8-2

Loop in Orbit Around Magnetic Dipole

A polar orbit is chosen because this would produce the maximum flux change through
the loop.

8.1. EDDY CURRENT TORQUE ON A WIRE LOOP

The flux density at the position of the loop is

5o R

il

f=&ﬂe-[2cos§ ?+sin§§] (8.6)

r3

where: llo = 4T x 1077 Henry/meter
B is assumed to have the same value at all points along the loop.

The flux through the loop is
d fB-ds=AB-r

27Ta02 A’-"—‘:’-:;IVI—e cos§ (8.7)
r

where: ago and A are the radius and area of the loop respectively.




The emf induced in the loop due to the flux change through the loop becomes

o sin W/, ¢ (8.8)

E = 277—80;LL0 Me (/

r

where: gs has been replaced by LJO t and LJL is the orbital angular velocity,

The above emf produces a current in the loop of magnitude

&

i = (8.9)
° 2TMa Go
where: CTO = resistance per unit length of wire (ohm/meter)
The current in turn produces a magnetic moment of ﬁ'of
M=1i, AT (8.10)
-
which interacts with the magnetic field to produce a torque T
= Y Y
T=MXB
Y =
T=1i ATXB
s> i
a 2 iy <
T = (70 [li:3Me] W sin Uot(rxf) (8.11)

For the circular orbit considered here, the geocentric radius is related to
the angular velocity by

2
W, =v_lr<3 (8.12)

where: K = (3.98 x 1014 m3/sec2) is the product of the gravitational constant and
the mass of the earth.

With the above substitution into equation (8.11) the eddy current torque
becomes

2

3 5 -
,E\=7_2T[LLOKMe:| aoduo [1_coszuot] (‘f‘xg)
o

(8.13)

normal to orbit plane (along pitch axis),
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The eddy current torque is seen to depend upon the third power of the radius
of the loop, the fifth power of the orbital angular velocity and inversely upon the
resistance per unit length of wire.

The eddy current torque, equation (8.13), has a frequency of 2(~é; but it is
always in the same direction normal to the orbital plane in the sense of the orbi-
tal rotation (pitch direction). This is due to the fact that when the radial
component of the field is increasing, the tangential component is negative, while
when the radial component is decreasing, the tangential component is positive.

The interaction of the eddy current with the field produces a torque that is
always in the same direction.

8.2, EDDY CURRENT TORQUE ON A THIN CONDUCTING DISC

Next we consider the torque on a thin conducting disc. The analysis is
similar to the wire loop except now the medium is continuous. The disc is thin
to allow the magnetic field to penetrate without significant loss in field
intensity. Also, the eddy currents are assumed to be circles concentric with
the center of the disc as in Figure 8-2. .

S

/O Y

/ / // <\ \*\ .
! A \

\

\ f O } o
-~
<
X\ \K 7

5 “

dl, T
-lose |°

{ : 7/
f<i— - ao—»IT

Figure 843

Eddy Currents in Thin Conducting Disc

Circular currents are a plausible assumption because if one starts at the edge
of the disc the continuity of current imposes the condition that the current must be
tangent to the edge. From symmetry the current must be the same magnitude all the
way around the edge. In this manner one can work from the edge to the center where
the current must become zero.




The flux through the area enclosed by a circle at a distance 1, from the
center of the disc is the same as equation (7) with a, replaced by 1,. The emf
is similar to equation (8).

r

2
£ =271, /“L_O_;e W, sin W, t (8.14)

The current flowing through the small cross section of thickness and width
dl, at a distance 1, from the center is

_ LTy a1,

diy = ———aem 8.15
o 27T10p0 ( )
where: /)0 is the resistivity of the material (ohm-meter).
The magnetic moment of this current is
Y 2 -
aM = TT1, digr (8.16)

and the total magnetic moment due to all eddy current -loops is found by integrating
equation (8,16)

4

I-VIJ= ZOTO[ LLZBME} “"/o sin[LJo t] _r\f 103 dl,

Upon performing the integration and making the circular orbit substitution,
equation (8.12), the magnetic moment becomes

(o]

=L

_ Tr:;;’OTo [ uﬁme] "

- 3
M X B) on the conducting disc is found to be

J sin[W, ] T (8.17)

-
The torque (T

2 4,5 o
T [ P et ] @ D)

(8.18)
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Equation (8.18) is similar to equation (8.13) except now the torque depends
upon the fourth power of the radius instead of the third power as in the case for
a circular wire loop. It also depends linearly on the thickness of the disc as
would be expected,

If the lenticular satellite is composed of a wire mesh, it is possible to
show that the total torque is due only to the contribution of the outside ring.
A flat wire mesh as shown in Figure 8-4 ' is composed of many small conducting
loops, each of which has an emf induced by the magnetic field.

|

L

e

Resulting Current, i,

Ol AN Ak
C AN

quJJJQ”

N

/

i}

Figure 874

Eddy Current Loops in a Wire Mesh

The current in any one loop is completely cancelled by the currents in
adjacent loops surrounding the given loop unless, of course, the loop happens to
be next to the edge. In that case current will flow around the outside edge only.
Thus, the torque on a wire mesh is the same as the torque on a wire loop that coin-
cides with the perifery of the mesh.

8.3. RELATIVE MAGNITUDES OF EDDY CURRENT TORQUES

The lenticular balloon will be approximated by (1) a thin wire mesh and (2) a
thin conducting copper disc. The torque on the wire mesh is given by equation (8.13)
and the torque on the conducting disc is given by equation (8.18). The constant
Ll o Me/K appearing in both equations has a magnitude of

Lio Me _ 20.3 Yolt sec3
K M2

(8.19)




W The emf induced into a loop is given by equation (8.8) with r3 replaced by
K/ 02-

C =27T[-li—§-M—?-:| azL,J3sin[L/o t] (8.20)

(o) (o]

The amplitude of equation (8.20) is shown in Figure 8-5. . The emf is
plotted versus orbital rate for different values of loop radius. ’

8.3.1. Torque on Wire Loop

The lenticular balloon will be made of a mesh material with wires that
are 1 mil to 3.5 mils square cross section, To establish an upper limit, the larger
value of 3.5 mils is assumed. This cross sectional area corresponds to that of 38
gauge wire for which the resistance per unit length, (fb, is approximately 0.7 ohms
per foot. Equation (8.13) may be written as

T = Taye (1 - cos 2 W/, t) (8.21)

ave K (8.22)

2
where: T ='Zr [llo Me] a°3 L/os
2

A plot of equation (8.22) is shown in Figure ( 8-6, for various values
of Tgve, ao and (Jo for the 38 gauge wire described above. As can be seen from the
graph, the torque on a single wire loop is completely negligible. The gravity gra-
dient restoring torque per degree of deviation from the vertical is about 10-2 foot
pounds,

8.3.2, Torque on a Thin Conducting Disc

Let the conducting material be copper of thickness 1 mil (,001 in),
then To = .001 inches and G o = 1.72 x 108 ohm-cm.

The torque on the disc is given by equation (8.18) which can be
written as

T = Tgve 2(1 - cos 2 W t) (8.23)

where : T [io Me To aot W3
Tave = ) K /)o

(8.24)
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A plot of equation (8.24) is shown in Figure (8:7, for various values
of Tave, ao and (LJo for the copper disc described above. This torque represents
the maximum value that could be developed by any large surface of material in orbit
around the earth.

8.4. EDDY CURRENT TORQUES ON GRAVITY GRADIENT RODS

A satellite moving in the magnetic field of the earth will experience induced
eddy currents from the field., The eddy current loops produce a magnetic moment
which then interacts with the magnetic field to produce a torque. We will consider
the eddy current torques on the gravity gradient rods of a gravity gradient stabi-
lized satellite. The satellite is assumed to be in steady state motion (pointing
along local vertical) in a circular orbit over the magnetic poles.

The rod is in a circular orbit as shown in Figure ({8:8, always pointing down
along the local vertical.

Rl

Rod

—
£ B
Field

T

"Orbit

Figure 8-87)

Rod in Orbit Around a Magnetic Dipole

The rods are actually thin walled tubes. The eddy currents will be produced
on the surface of the rod and travel in circular paths as shown in Figure 8<9. .

Eddy Currents

Figure 829

Eddy Currents in Gravity-Gradient Rod
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The flux density at the position of the rod is

B= U, H (8.25)

where: ﬁlis given by equation (4) and

Lg = 477 x 107 Henry/meter
ﬁ is assumed to have the same value at all points along the rod.

If we take a closed path of radius a, on the surface of the rod, the flux
through the enclosed area would be

B [i. &= Ma?i- 3
@=[7Ta02 .2_#°__M_e cos§ (8.26)

r3

In a circular orbit the geocentric radius is related to the angular velocity
by the equation

W2 =K (8.27)
3
T
where: Lug = orbital angular velocity
K = gravitational constant times mass of the earth

Also, the polar angle és is a function of time through the relation.
§= W, t (8.28)

The negative time rate of change of flux is the emf, namely

£ = 27Ta°2[ /*_‘;z_Me;]wf sin[ W, ] (8.29)

- The current flowing around the rod is equal to the emf divided by the resis-
tance of the rod along the path of the circular current. Total current in the rod
is, therefore,

ET, L

i, = m (8.30)
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wall thickness of tube
length of gravity rod
resistivity of the material (ohm-meter)

where: To'
L

o

The total magnetic moment of the rod due to this current is

-
M= T ap? io T (8.31)

and the torque on the rod is

- - -
T=MxB (8.32)

After combining all of the above equations we find the following result for
the torque on a sipgle gravity gradient rod.

Hi

2 5 —
TTWT 'L a 3 -
Zop: 0 u; e Uo (1 cos 2().{) t) (r x§ )

(8.33)

The constant [lb Me/K appearing in equation (8.33) has a value of

(8.34)

Magnitude of Eddy Current Torque

The gravity gradient rods have the following properties:

ao (radius of rod) = .45 inches
o' (wall thickness) = .005 inches
o (resistivity of copper) = 1.72 x 10-6 ohm-cm.

The eddy current torque, equation (8.33), is seen to be always positive with
an average value of

'1,.a 3
Tave = TT‘T?/)O "o [ o Me] Wo (8.35)

Upon conversion of units, the square of equation (8.35) becomes

2
Lio Me -11 ohm hr>
o ——— = 1.5 xlo i  a— ft"lbs
[ K ] w3 ft ( )
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and combination of constants for the gravity rods produces the factor

3

1]

MB_ = 1.726 x 10'2 _M3
2 [)<3 - ohm

Therefore, the average torque in terms of orbital rate and length of rod
becomes

Taye = 2.58 x 10713 1 (J,° (8.36)

An inspection of the average torque reveals that the torque is very small
and completely negligible in satellite dynamics. A plot of the average torque
versus orbital rate for various rod lengths in shown in Figure 8=10.%.




0T-8 {INDI4

103

CgTIT Pzl TN

L

—ON O I < L]

]
B ‘_,
bt - i I -
T ' : [
e e rr e e e
H m ; - -
; i ’ ]

\
A
\

\

Javal L1003 2 TIINY T8I0

=H

: | 1 ST
: : H :
BE H v T v i
SO . B Rt SR o B T e 1= -
] . —_ 1
ﬁ 1 | . }

{ i i [
SERRI |

i

lJ.vvl —

T
! V
e b B -

N T O OO O P D O RS20 PSS S 070 £ ] 5P 5 S L9 PG AW S 0 A SO TV PO RS : ezz=== LA ))
L6849 & v € [4 I153..9 & v € [4 16
(LI3IM goz z0 HI1OMV77 =7)

Saoxy INAIAYID-LLIAVIS NO




REFERENCES

1. General Electric Co., Passively Oriented Lenticular Satellite Study
(letter proposal) 8 March 1963.

2. Pugh and Pugh "Principles of Electricity and Magnetism'" p. 223, 224, and
Problem 7-21 p. 239.

3. G. P, Harnwell "Principles of Electricity and Electromagnetism'" p. 330-347.
4, W. Panofsky and M. Phillips '"Classical Electricity and Magnetism", chapter 9.

5. R. Clayton '"Passive Magnetic Damping of Communications Satellites",
G. E. Technical Information Series No. 63SD268.

6. Levihson, Moris M., NCEP ANALYSIS AND SYNTHESIS MEMO NO. 131-098, "A

Comparative Study of Magnetic Unloading Schemes for the OAO Vehicle',
24 March 1961, :

104




DEFINITION OF SYMBOLS FOR APPENDICES I AND II

English Capital Letters

B = Magnetic Field Strength in Gauss
D = Operator Symbol - 4
df
H = Magnetic Intensity in Oersted
I = Moment of Inertia in slug-ft2
IBO = Yaw Moment of Inertia of Satellite in Slug-ft
M = Magnetic Moment of Dipole in poi;-cm
M, = Earth's Magnetic Moment in pole-cm
Q = 1Internal Torques on Vehicle in 1b-ft.
T = External Torques on Vehicle in 1b-ft.

English Small Letters

a = Real Part of Quartic Root

b = Damping Constant in lb-ft-sec/rad

m = Average of Magnetic. Field Variation

q = Imaginary Part of Quartic Root

r = Radius From Center of Earth in cm. or ft.
t = Time in sec.

Greek Capital Letters

b

Magnetic Colatitude in Deg. or Rad.

N

= Magnetic Latitude in Deg. or Rad.

Mass of Earth, used only as LL777= 1.41x1010 ft3/sec?
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Greek Small Letters

»

6
¢
)
Li =
V
T
¢
W

n
W, =
Subscripts
B =

D =

£ =

Dyn =
Max =

Min =

Angle Between Magnet and Magnetic Fiéld in Deg. or Rad.

Angle Between North Geographic Pole and North Magnetic Pole in Deg. or Rad.
Damping Fraction

Pitch Angle in Deg. or Rad.

Gravitational Constant Used Only As = 1.41.1016 ft3/sec2

Orbital Inclination in Deg. or Rad.

Time Constant in Orbits or Hours

Angle Between Local Vertical and Magnetic Field in Deg. or Rad.

Undamped Natural Frequency of Satellite

Orbital Frequency or rate in Rad/sec

Satellite

Damper

Final or steady state position
Dynamic

Maximum

Minimum

To avoid excessive use of subscripts, words will be used as subscripts for vari-

ables which are transient or intermediate
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I, PLANAR ANALYSIS
For simplicity, the magnetically anchored satellite can be assumed to have
the Damper located at the center of the vehicle. Considering the earth as being
located on the negative x axis, the coordinate system will ba described by
F' r I-lt
igure X X

b | /
7~ /

\\Z&

IR

Figure -1

Where : To Earth

the x axis is the local vertical (positive away from the earth),
the x' axis is the direction of the magnetic field (positive away

from the earth). as shown

GB = Angle between axis of least inertia of tli satellire and x axis
©p = Angle between magnetic moment of ‘the damper and the x axis

® = Angle between the x axis and the x' axis

I, = Pitch and Roll Inertia of Satellite in Slug-Ft2

IB°= Yaw inertia of satellite in_Slug-th

The analysis is planar and a magnetic polar orbit has been assumed., In addition

the vehicle is assumed symmetrical with the satellite pitch inertia equal to its

F
voll inertia. |
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Since only a planar analysis is being performed; cross coupling can be

“ignored and Euler's dynamical equations become

oo .

Tg - Qg = Ip O 1-1
p )

Tp - Qp = Ip 8, I1-2

':where T is the external torque, and Q the internal torque. The subscripts
B refers to the satellite, and D the magnet.
Only one axis is being analysed and by Newton's Third Law.
QB="QD I-3
The internal torque is the damping torque and is
: . .
Qg =b (8 - 6p) I-4
where b is the damping constant (ft-lb-sec). After Substitution, Equation I-1
~andI1-2 - becomes
o ° eo
(4 ©
'_TD+b(QB-QD)=ID3D I -6
The only external torque experienced by the satellite is that due gravity gradient

which is calculated from :
TB = -=3WJ/p (IB - IB ) sin ZQB I-7
2

where (/, is orbital rate

The torque on the damper is predominately magnetic and is computed from
Tp = -M Ho sin (Op +0) I -8

where M is the magnetic moment of the satellite in pole-cm

H, is the magnetic intensity in Oersted

0
with a permeability of one, the magnetic intensity equals the magnetic field B, in

gauss, . hence

TD=-MBSTI.I’I (QD+¢) . 1‘9
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Representing the earths magnetic field by a dipole, the magnetic intensity can
be computed from

: H=M§\/1+381n23 = B I-10
- r

where
Me is the Earths magnetic moment in pole~cm
% r is the radius from the magnet‘in cm
= 1is the magnetic latitude

combining with Equation I-9

TD='M§§\/1+3sm2-_.: Sin (8p + #) I-1
r

To linearize the dynamical equations, it is necessary to define an average value

of f1+3 sin2 =

| ) An average value will be determined by the method suggested by M. Levinson in

i - NCEP Memo 131-098. The average is
‘ -Q ’ Amax
’ 1

T J—— 3eos’ A+ 1) dA I-12
[\'max-/\vminAmin

where j\_ is the magnetic colatitude, Integrating

m=/[__1 [ _5_.21.\. . 3 Sin 2A]A‘""x I-13

4 Amin

,./\maiz ../\. min

90° + (U+ (5) 1-14

max

=900 - (U+ O

where 6 equals the angle between the north geographic pole
and the north magnetic pole,andl/ equals the orbital
inclination

o
Representing the earth as a dipole,5 = 0, and for a polar orbit, V=90

Hence Amax 180°=TT
A 0

min

- And - ’ 109 ..




M= /5 _3 _
3 t5 (0 =1.58

Suibstituting into Equation I-11
T, =-1.58 MMe Sin (6 +9) I.15

3

D

As given, TD would be in dyne-cm., It is necessary to convert from dyne-cm to

1b-ft.
Copo=- 1 «  1.58 M Me Sin(e+ ) I-16
D 1735581.107 dyne-cm 3 %
1b-£ft
Tp = - 1.165 .107 MMe Sin (6p + 9) 1-17
2

The strength of the magnetic field is inversely proportional to the cube of

the orbital period.

Wwz2=- MU
o

I1-18
16 £13/sec2
wherell]?? = 1.41.107 ft°/sec4 and r is in ft
With r in cm,

UM = 1.41.10%8 (30.48 cm)3/sec? = 3.993.1020 cm3/sec2

And
Lo- Wo? I-19
r um
Bapseituting into Equation I-17
2
Ty = - 1.165.1077 &W° Me M Sin (6p + #) I-20
, 3.993.10%0
Simplifying
Ty = -2.918.10728 ;2 Me M Sin (op + 9) 1-21

The magnetic moment of the earth is

M, = 8.064.1025 pole-cm (Ref G.E. TIS 635D268)
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Hence

T = -23.53.10"3W/02 M sin(ep + 6) I-22

D

Tp = -.0235Js% M Sin(ep + ©) I.23

Combining Equations I-5, I-6, I-7, and I1-23

I 6 + b(8y - 6p) + :;hz/oz(xB - If) Sin20; =0 I-24

Ip & -b(6g - 8p) + .0235LJo% M Sin (6p + 0 ) =0 1I-25
A new angle'),will be defined to be
7= ép + @ 1-26
Whéreir is the angle between the magnetic moment of the
magnet and the field. Then
70'=6D+B 1-27
In a Polar orbit, the field makes two rotations for every single rotation

of the satellite. Hence the average reldtive: velocity between them is ‘one orbital

rate, With © defined as shown

o

) =96 -4} 1-28

o0 oo

¥ =ep I-29
Substituting into equations I-24 and I-25

1p & + b(Sp -7 - Wo) + 302 (1p - I§ ) Sin 265 = 0 I-30
2

o o Dw 2 .
1,7 -5y - Y1) + L0235 sinf = 0 131
To linearize these equations, it is necessary to find the final angle in
steady state. In steady state, the vehicle and damper are in static equilibrium
and P 2 o0 2°
QB = 7 = QB =7 =0

Hence equations I-30 and I-31 become

bl = 302 (I - I ) Sin 20 . I-32
2
-b(, = .02350L/,2 M sinf ¢ 1-33
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Where the subscript f means final position,

Considering ©p and }V to be small variations about OBf and Zr £ respectively

Sin 26p can be replaced by Sin 2(9B + ng) I-34
Sin 2/ can be replacéd by Sin (2r + }rf) I-35
Expanding

Sin 2(eg + er) = Sin 2 8g Cos 265 + Cos 2 6p Sin 204¢ I-36

sin ( 7'+ }'p) = sin ) cos Te+ Cos / sin 7f I-37
For €y and 2 small

Sin 2(8g + Ogg)

28g Cos 20gf + Sin 20p¢ I-38

Sin ( ‘j' + ;)/f‘) ) Cos 7f + Sin 7 £ » I-39

Substituting into equations 1-30, and I..31,

-

a P 2 ,
i GB + b(QB ~!‘;,' ) +3wo (IB - IE )GB Cos 2ng

+_§‘32Lo_2_ (Ig - I3 ) Sin 28, =~ bli/y =0 1-40
1,/ -b(8g - [ )+.0235L,2 M [ Cos § ¢
+.0235L/2 M sin f; + bl =0 I-41
In both of the above equations, the last two terms add to zero by equations
I-32, and i-33,

Hence

ty 8 + b(8g = ) )+3(/,2 (Ip - I§ g Cos 20ps = 0 I-42
IpY b8 - )+ .02350h® M cos J =0 1-43

These eguations can be non-dimensionalized if a change of time scale is

performed. let

p—

[ =lot 1-44
Then
a4 _ 4 da - _1 _d
dT = dt 4T (Jo dt 1-45
d2 = _1 d




notation to mean with respect to T
o

Using the 29

(o2 1 eB Hob(8g - J 1+3W/,2(Tp - 1§ )6p Cos 20p¢ = 0
Wo? Ip 7]’5‘4,(93 7 )+.02350/,2 M7C087f
Simplifying
oo
9B+J;FJS(QB -7’)+3(1-£§- ) 6g Cos 2 6¢ = 0
7 - I;b./o (63 -'};) +.0235 %70053 Y=

In operator notation

— 5 . ‘
D + b D + 3 (1 - IB Cos 29 9 - b =
—_— —2_ ) Bf | °B 7
L IBUO Ip 1 IBLJO N
- b D 2
L . e, + |D° +b D +,0235 M Cos =0
- D

1-47

1-48

These equations are linear and homogeneous, and for a solution, the deter-

{ .
minant of the coefficients of the variables must be zero (Cramer's rule)

Hence, _ 2 ) N
p°+ b__D + 3a0-Is Yeos 265¢| |- BD
i M)MM Ip ' IBQJO
) . v = 0 I ‘53
- b D 2 -~
bR DE+b 4 L0235 M Cos )
| Ip-.o Inl/o -_—
D I
D
D%
+ D3[b + b
IBLJO fg*é_.
2 _ 10 k 2 ~
+ D [ 3 (1 IB )COS 20p¢ *b - b2 + .0235_M Cos ',
-
+ p|__b .0235 M cosf¢) t _3b I3
f)] T —run [ 1-
IBUO< I, / Ip LJo Ig Cos 2 Op¢
+ 13/ 1 Cos 20 0235 M
Bf ° —
( ) I Cos Y ¢ I-54
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Which can be reduced to four non-dimensional parameters

\

b
Is /o _IB ID IB

-
=
—

-
[
=

Da. . B
3[
+ D 1%
Buo< e 13 )]
w2 [ IB Cos 20p¢ + 0235
Cos’]

+ D .0235 M Cos’]f +31- IB \Cos 20 Bfﬂ
IB UO ID
1T /7 12
+ 3< -_B >cos 20p¢ 0235< ><‘ >00s’)’f I-55
I
B ~

Where

BIBLJO (1 -1

Cos7= Cos frc Sin ) - b ( Ig 1 T-57
IzWo M .0235

Cos 26g¢ = Cos {Arc Sin(’2b 1 g 1 I .56

Solution of equation I-55 will yield the damped natural frequency and decay

times of the system as a function of L/, . The roots will be of the form

a tai I - 58
Where
a = (L*/ /L;O I-59
i / 2
q-= [ - I - 60
bhy W Jvl (
‘The time coustant is
L =1 I - 61
(Wa o
In terms of orbits 1
- Time Constant = -1 = a T‘orbit 1-62
= I 27

orbit
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B. Steady State Analysis
The equations describing steady state are equation I-32 and I-33

bl = 33/02 (I - I3 ) Sin 285, | 1-32

- b = .0235 (W 2 M Sin Tf 1-33

These can be rearranged to

Sin 20gg = _2b = ( II-1
30, (15 - 13) 31 uo (i- I°/IB)

sin ¢ = _-b - - _b I )\_1 11-2
L0235(, M Igl/o \ M J70235

Since the yaw position of the vehicle is irrelevant, ng may be considered an

error. The position of the magnet is tdtally irrelevant, and irf.is merely an
offset. However for reasons of stability .~ '~ - the value of ;ff should

not be too large. 'Large'" will not be defined here.

Considering ©gf as an error, it should be kept small, hence

26 = 2b 1 ' II-3
Bf i -
Ops = l( b 1 11-4
3\ Izlo (1-1g /1y)

Since damping must be kept small, the natural frequency of the satellite is un-
changed by the damping. Hence-dividing the gravity gradient torque by the
inertia

W = L,Jo \/3 (1 - I% /1g) II-5

n

The magnetic disturbing torque occurs at a frequency of 2(¢éand,wiﬂllight damping

the dynamic amplification is

1 b d

e 1

_Bf dyn = Ty T

o [Tt -Wetun y? 12 1- g 2
B VY
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Ogs dyn =

B e
Bf ]:7 3(1- IB/IB
which reduces to
®sf dyn - 1 _
e.

B l

- 301 - 13

3(1-I8/1p)-4 ' -
3(1-13/1p) I

/1g)

1+3 Ii/IB

The maximum error

I1-7
1
713 1§/1p II-g
3(1 - Ip/Ip)
11 -9

occurs when the static error and the dynamic error add

Opfmax Ops (1 + Y3 dyn ) II-10
©pf
= op¢ < 1+31p /Ig+3 -3 13/I, ) II-11
1+3 Iﬁ/IB

= ng < 4 ) ‘

1 + 3 13/1g II-12
Finally
4/ b 1 ~
Opex = _< > I1-13
X 3\IzWo/ ~(-1g/1p (L + 3 1§/1p)

This equation is plotted in Figure %4-2

Considering ]f f as an offset, it will not be considered small.

frequency of the magnet is approximately

W, = W, [ _.0235 M
I

D

For a magnetic moment of 2000 pole cm, and a damper inertia of

.2 103

-2
W, = LJB'V/Z‘BS'IO

1.10-

2

= 68.6 L/,

The natural

I11~14

.01 slug-ft2

I1~15



Considering the magnet to be critically damped

7de“ - 1 I1-16
£ W )P+ [1-ufM>2:| 2

The disturbance torque on the magnet is also ZLJO

‘7% dyn _ 1
B T <2 2 2
7/ £ (2x 2Wo )‘ [1 2(,/, ] ' 11-17
68.60/ 8.6,
| Zi_dzn_ = 1 -1 11-18
Y £ \/.0034 + 1
! Hence ?’f dyn = 7f and
7fmax 7f = 2 Arc Sin {- b Ip 1
Iz Wo M .0235 II~19

In connection with the use of this graph it should be noted that the constant
«0235 is based on an average field strength, For an overall vehicle perfor-
mance, this average is adequate, However, to prevent the magnet from deviating
too far from the magnetic field, it is desirable to consider the weakest field,

The constant then becomes

0235
—=s=— = ,014
1.58 X 1 149
Hence
Sin _J_f = D Is YL __ : I1-21
2 ~hax Igl/o M J/ .0149
Rearranging

M

- b 1 1
2

11-22

This is the equation plotted in Figure 4-3
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DEFINITION OF SYMBOLS FOR APPENDIX III

The symbols are as defined in Nomenclature at the front of the report, with the

following exceptions =

ol &L

]

31,39, .23
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wire spacing from center to center on mesh

vector to the center of the lens shape from the center of the spherical
surface

force vector with appropriate subscripts

constants in terms of ¢

Torque vector with appropriate subscripts

Number of summation terms to be taken to find the total case uv torques
number of case uv longitude wires grouped together as identical to find
the summation of the wire torques.

thickness of the wire

torque lever arm for both the offset and the geometry of the vehicle.
latitude angle of an incremental surface area of the wires

change in @' for consecutive longitude wires

value of yy(see Nomenclature) along the edge of the shadow line

change hlyy(see Nomenclature) for consecutive latitude wires

Subscripts

a

b

uv

indicates latitude wires

indicates longitude wires

indicates summation of all similar wire torques

used when 8 > @' for longitude wires and l//-e yjl

used for total of u and v quantities - Sun can see inside and outside

of conical longitude wires
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APPENDIX IIX

SOLAR TORQUE ON RADIAL SIDES

To the present the surfaces illuminated have been considered as parallel to
the surfaces of two spherical segments. With a square cross sectioned wire mesh,
this is half of the illuminated surfaces. We now consider the radial areas. The
sun can see at most two surfaces of a square cross sectioned wire. Consider the
wires as two types, longitudinal, that is, going around the configuration's axis
of symmetry, and latitude wires, that is, arcs = of circles all of which pass through
the axis of symmetry. The planes of these arcs all contain the axis of symmetry.

These two wire types each have two cases. The front and back surfaces of the

‘complete configuration each present a different geometry so each is considered.

Let the subscripts "a'" be on terms concerning the latitude arcs and "b" Be

oh terms concerning the longitude circles for the surfaces closer to the sun.
The respective subscripted quantities primed are the respective'quantities for
the back surfaces farther from the sun. Shadowing is neglected but may be added
by a proportional multiplier approximation.

Latitude Surfaces Closest to Sun

Figure 1II-1 shows the area in the i E‘E coordinate system.

Figure III-1

The vectors in Figure III-1 are more easily seen in Figure III-2 where X
measures from the geometric center of the lens, From this figure,

- - i o
r = D + X, + VL
- - — -
or ¥y =r - D - x
Now:we let B =~  _ -
' r - D = h
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The vectors ny, s, and h, are then

-sind

cos ©
= 0] , ha
-sin ©

Figure III-2

(sin @ - cos @')
sin @' sin ¢ (I1I-1)

sin Q' cos

The offset vector (not illustrated in Figure III-1) is,

(I11-2)

The incremental solar force on a differential area dA is, as explained previously,

o - - - - =2

dF = P,da [5(s m) (1- P+ % P, n(sm)+2 pg n(s'm” ] (111-3)
and the torque about the c.m. of the balloon is

- - - - - -~ —>

L=vax dF=thhF-xxde (I11-4)
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where E A
balloon to a dA.

" From Figure III-1,

may be considered as the vector from the geometric

dA_=r 7 d A

s'ny = sin 6 sin &

a
I

Thes

dF( = :‘Or Tl d¢'

1 - ps)sine cos® sind

+

wiN

stinesin’bcosﬂ)+2ﬂssin293in2$cos’”

-(1 —()S)sinze sini)—-%pd sin8siny —2pssinzesin3¢.

center of the complete

(I11-5)

(I11-6)

!,

(IL1I-7)

Then the torque integrated over this one wire arc is, from Equation (III-4),

A

—_

L, =’/' (h, - x) X dF, =L, -L
I-¢
2=

Xa

=3 ﬂ-
where Lha = CE"'O)
ha X dF,
(@ -0)
- - (-0
and 2 i S o
dF, = x X F,

L%a =vXX:[P
@)

_(_12-”._ -

Rand
Breaking Lha_into components gives,

ro.
G

(I1I-8)

(1I11-9)

(III-10)

“hay ~ f Pr? 7, {sing' sinwlzﬁ-ps)sin%sint’) - %Pdsinesmz’b ‘Zps'sngsmhﬂ

(o]

-@ -9)
2

-sin@'cos ‘lb[%ndsinesin I cos h+2 Pgsin20sin? ¥) cos t]} dg'=0

Lha]_ =0

LhalT =0

(I11-11)
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since all terms are odd functions of@'

_ 2 _ . " . 24051
dlpa, = Pof 7 l{sm @'cos z,b[(l- ps)sinecosesinv,/,]+(sm¢-cos¢') [(l-ps)sin 9sin¥’
+ %Pdsin 0 sin2 ! + 2pS sinZe ‘sin3 !"]} dg’

T 17 .
Integrating from @' = -(— - @) to @' = (=~ - @) gives, - T
8 8 G- (- 0) 8 < -0 & -

Lha2 = Por2 T [(1 -ps)sinzesinz/) + %pdsinesinzw +2pssin29sin3lg~ sin @¢[{d@"'- [cosg' d@"'

-G -0 -G -0

ﬂ B
sin0sin?¥ +2P s inzesin34):|' EZ G "9)s in0-2cos¢:|
(111-12)

L

Por,2 ) E(l-ps)sinzesinzb +.§_p_d

haz

The summation of each wire's torque may be approximated by an integral by solving
the trapezoidal rule for the summation,

c1 Yo + Ya
o dx + =& -1
o i Ax 7 2

(III-13)

ey s

Let &Y be the change in ¥ for adjacent wire centers. Then if a_is the
distance from the centers of adjacent wires, we assume this is the spacing at
the periphery of the balloon.

We have

A = 2w (I1I-14)
r cos( .

Integrating (III-12) via (III-13) from{ = 0 to ¢ = 1 and substituting (III-14) gives,
_ 2, ,xrcos¢ r m . . ) .
LhazT = 2P, r° 7T, a, [(2 @) sing -cosG] sin® [:2(1 Pg)sind

. m 8
f _3'pd + 3 ps sinG]
T
. LhaZ‘_I = 2Ppr3 awl sinBcos@ [(g - @)sin@ -cos ¢:] . [(2 -!%Ps)sine +

~r

3 Py
?III—IS)

This is the total torque second component due to all the latitude arcs closer to the

sun. The first component was found to be zero for each wire in Equation (III-11),

The third component is,

* This notation is used only in this one equation and has no other significance.
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. e

i ¢ e =

v
.

.
)
¥

(LT -5 :
5 o . . . e

2 . vl 2 . . e 2 ‘
Lha = Por Tl/((_ . ‘@{(sm b  cos @) [3 py sin @sin Y cos ¥+ 2ps s Osin zbcosﬂ -
2

_ -
- sin ¢’ sin Yf(1 - £) sin 6 cos Bsin zb:]} ¢

2P rzT (E—d;) sin® -cos 9 |° p smGsmd)cos!b+2psm Gsm Yeos P
o 1]\ d © (II-16)

This c‘omponent is now integrated via the trapezoidal rule in reverse, Equation (III-13)
from Y= 0 to ¥= 7, piecewise

m
a 2_ rcoso |(T_ ey .| 2 . .
LhaaT =2 Por ‘rl aw [(2 ) sing - cos ¢>] [3 pd sin Gf s_mzbcoszbdzb +
‘ 0

2, T 2
+2p_ sin ef sin” cos Vd P | =0 (I1-17)
0

I

Lha

3

We see from Equations (III-8) and (III-10) the integration of the forces Fa are needed.
From Equation (III-7),

-y <-12f _¢) - Lid ‘ —
Fa. = dFa=2(— —¢) Por T (1—p) smecosesmz[)

"?—

(ﬂ ¢) pd sin @ sin Y cos‘P+2p sin Osm Peos P
-(3-

- (1 -R, )smze sinzb— 3 P smOsm Y-2p sm G sm )
— S (m-18) |
Then the torque first component is, from Equation (III-10),

an = (2 ¢) P TT { [(1 p)sm Gsmzb——p smﬂsinzw-zps sin29sin3zl]+

L[ Py sin@siny cos P +2p sm 6 s1n ¥ cos d)]} (I1-19)

and a piecewise integration of the wires in(III-19) from =0 to ¥ = 7 using (I1I-13) and "
(OI-14) gives,

_ m rcosd 2. k-]
anlT = (2 -¢) Prm a_ yLljZ(l p,) sin 0+ 3 Py s1n9+ P sin 9]

_ (T 2T : 2 ) i )
anlT = (2 q)) Por i Yy, cos @ sin 6 l:.(z + 3 ps sin 6 + 3 pd:l | | (TI1-20)
m
L = 2("-—¢> P TT - p)s1n900sesmzp]+x a- p) s1n 6 sin Y+
xa2 2 { l_ l_
2 o indsi o
+ 3 Py sin 6 sm Y+ 2 p, sin sm ) (II-21)
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and piece wise integration of the wires in (III-21) from Y= 0tod= 7 using (UI-13) : :
and (III-14) gives, ;

- T rcos¢ - ;
anzT = 2 (2 cza) Por ’I'1 a, {2 zr 1 ps) sin 8 cos 6 +

. 2 m . 8 . 2 .
+xo|:2 (l-ps) sin” 6 + 3 pd sin 6 + 3 ps sm' 9]} ;

T X

_, (T 2 11 . ) »f

L,p =2 (2 ¢) Pr’ = cos ¢ sin 6 {ZZL (1 - p,) cos 6+ K
2 w

2 . g -

+x, [(2 + 5py) s + 3 pd]} (II-22) :

L —2<E‘¢> Prt 2 in 8 sin ¢ cos ¥ + 2 '29‘z¢’c0sd) +
xa3 = P 0r 1 x0 3 pd sin @ sin oS ps sin sin 1.‘%
-y [(1 - p,) sin 6 cos 0 sin zbj . (I11-23) o

and piecewise integration of (III-23) by (III-13) from ¥ = 0 to ¥ = 7 using (III-14) gives,

. ¢ o
it e e

il r cos ¢ : -
- - - _ P AL 4 _
an3T 2 (2 ¢) o T L. 2yL (1 ps) sin 6 cos 6
w
m 2 Tl ;
= - = _ P — - i - K
an3T 4 (2 q)) L3 a ps) ¥y, cos @ sin 6 cos 6 (I11-24) :

From Equation (III—8)1;’ Tﬁin components is, when integrated to total the effects of
all such wires, a
d - <»

Lat = UYhat = Lxar (ITI-25)

The components of EhaT are found in Equations (III-11), (III-15), (11I-17), while (III-20),
-2 -24) form L, .
(I-22) and (I-24) form L__ .

T
- T 2 1 : 2 . ™ -
La r = 2 (2 ¢) Por a4 cos ¢ sin 9[(2+3 ps) sm6+3 pd] (II1-26)

1 W

| At e

from Equations (III-11) and (III-20).
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The second component is found from (III-15) and (I1I-22) substituted into (II1-25)

T
2 1 m . 2\
La. v ZPOr‘ a s1n900s¢{r[(2 “Q5) sin ¢ - cos r’ﬁ] [(2 *3 PS)"
2 w
U S BTG AN _ .f( L2 )
mnei?’od_J (2 \L)EAL(I ps)coser Xo {2!3ps
. ~) ‘
»sin 6 + 3 P4 j_jj (II1-27)

T

2 1 . . 2 id s , ;
La T = 2 Por ;v—v smecostﬁ{sm 6 (2 +§ ps>[(;z——r/a> (r sin ¢ -x O)— r COos y]i
T - r o Y -
- 2 (2 —¢) (1 ps) zL.cos 6 + 3 pd [(2 cf)) (r sin ¢ xo) T coSs /]}

(I1I-28)
L -4 (T - Pr‘.2 I-l- 1-p) cos @ sin 6 cos 6 111-29
a3T - (2 o a ( s Y1, ( )

from Equations (III-17) and ([1I-24) in (III-25).

Latitude Surfaces Farthest From Sun

Figure III-3 shows the area in i j k coordinates.

(Figure III-3)
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Equations (I11-1) become

0 cos 8 - (sin ¢ - cos ¢')
E'a = |cos ¥ s=1 0 f{'a=r ~sin¢' sin ¥ (IT1-30)
- sin ¥ - sin 6 - sin ¢' cos ¥

The offset vector (IMI-2) becomes

X
o
H -1
X = Y1, (II1-31)
L
and equations (III-5) and (III-6) are still
}
= o B\ R YT
dA a 1‘7’,1 d (I11-32)
s - H'a = sin 6 sin ¥ (I11-33)

A comparison of Figures III-1 and III-3 shows that ny = n'a and ® =% always and s
is unchanged. Also dA, = dA'a. Therefore_d-ﬁa = (fF’a. We also see the variables .d;,'
and ¥ are to be integrated over the same intervals as in the previous case. But R, = “h' a
always. Equations (III-8) to (III-10) for this case are

(II1-34)
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and piecewise integration of ¥ Inom 0 tom gives

il |

- = | - (II1-35)
aT L,'haT anT : |

The components of Ly, are given in Equations (ITI-11), (ITI-15) and (III-17). The com-
ponents of L., are given by (I1I-20), (III-22) and (III-24).

! _2<
alT

L' -2 P 2 ——Tl sin @ cos ¢ (E- in ¢~cos ¢ |- <2+2 )
a2T g 3 in 6 co r 5 sin 0S 3 ps

Then

T — “

2 1 . 2 : T
- qﬁ) Por a, yp, cos ¢ sin 6 L(z *+3 ps) sin 6+ - P, | (1I1-36)

-
!
L |

3°d

w
NP T i (5:25).
s1n9+39d]+ (2 Q)EZL(I ps)cosedrxo {@+3ps)
* sin @ + z P } TII-37
sin 3 Py (T11-37)
' 2 Tl 2 i
LazT = —2Por ;‘; sin 6 cos ¢ {sme (2+§ ps)[:<§-¢) (r sin ¢ + xo)—
m oA (TN e i g )
- rcos o +2(2-¢> (l-ps)chos9+ 3/0d[<2 r,é) <rsin¢k%<.o)
- T COS ¢] (I11-38)
' m 2 'El
La3T = 4 (E-(Z)) Por ;;V— (1-ps) yL cos @ sin 6 cos 6 (111-39)

This completes the derivation of the "a' torques. These are expressed in com-
ponents in Equations (III-26), (II1-28), (III-29), (III-36), (III-38) and (II-39). If there is
no shading

T
L = T 2 1 el .2 : N R
L, T =4 ( -¢> P r” = y cos¢ s1n6[k4+3ps) sin 6 + 3de (O1-40)
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2 Tl 2 /1
Lyt p =490 o~ Sin9008¢{sin9- (2+§DS)[—XO (‘2--¢)J+
2 w
E | -
-cos 6 - 2 (2—)<1—ps) zZy + 3pd[ ( (b):l} (01-41)

T
™ 2 1 , )
NE R (2 ¢) Pr a, (1-p,)y, cos ¢ sin 6 cos @ (I11-42)

=
!

The torque L't given by Equations (III- 40) to (I-42) is a theoretical consideration
in which absolutely no shadowing exists. Actually the back surfaces are shadowed by the
front surfaces. This is approximated by taking only a proportionate amount of the back
surface torques. The front surfaces are shadowed by themselves around the edges. This
effect is neglected. The total torque on the whole lens' latitude radial surfaces is

- '
LAT = LaT + K1 L aT (I11-43)

where L aT components are given in Equations (III-26), (I-28), and (III-29) while the
components of L' 2T 2re given in Equations (III-36), (HI-38) and (I11-39).

Longitude Surfaces Closest to Sun When ¢' > 0

-

T e
// e
W N
AR
t‘ ‘(. ‘V d
n,
|
| .
[ e sing
|
"

(Figure III-4)
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—

The vectors ;b’ s and h,_ are

b
sin ¢' cos 6
Hb = cos ¢ sin ¥ s = 0
cos @' cos ¥ - sin 6

The offset vector (III-2) is

Also

. '
dAb = Tlrs1n<z$ dy

s - n = cos 8 sin ¢' - sin 6 cos ¢’ cos ¥

For this case, Equation (III-4) becomes

L = fhbXde—xx deb=th-be
where _,

Lob p X dFy

L =§xfci"F - xXTF
xb

[
=3
>
o
'

1
sin®d -cos ¢
-

h =t | sin ¢' sin ¥ (IT1-44)

. \J
sin® cos ¥

(III-45)

(I11-46)

(I11-47)

(I11-48)

(I11-49)

If Equations (III-44) and (III-46) are substituted into (III-3), we have the force components

of de

P

by

R LT

dF, = Po 7.'.1 rsing d| @ - ps) (0052 6 sin ¢' - sin 6 cos 8 cos @' cos ¥) 4+

+ -:2,: pd (cos @ sin2 @ - sin 6 sin ¢' cos ¢ eos Y) +2 ps (cos2 6 sin3 ¢' -

2 ;
- 2 sin 6 cos 8 sin” @' cos ¢ ‘cos Y+ sin2 @ sin @"'cos2 ¢ cos2 ;b)] (I11-50)
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T —

dF, = P T r sin (b' dy *z-.p (cos @ sin ¢' ebs @' sin Y - sin 6 cos2 (b' sin Y cos ¥) -
b2 ol | 3 ' d .
: 2
+ 2 ps (0052 ] sinz ¢' cos ¢' sin ¢ - 2 sin 6 cos 6 sin ¢' cos” ¢' sin Ycosd -+
+ sin2 6 cos3 ¢' sin cos2 'z,b):] (1-51)
de = Po‘rl r sin (b' dy |:(1 - ps) (-sin 8 cos 6 sin o + sinz 6 cos ¢ cos Py +
3

+ % pd (cos 6 sin ¢' cos ¢' cos ¥~ sin 0 cos2 ?' cos2 ) + 2 ps

. 2
. (cos2 6 sin2 ¢' cos ¢" cos i - 2 sin 8 cos 6 sin @t cos2 ¢ cos O+
+ sin2 6 0033 ' cos3 !b)] (T11-52)

Substituting the Equations (III-44) and (I1I-50) through (III-52) into CH—48) has as a first
component,

2 ' A . i ! -
dthb = Porlr sin ¢ {smcb‘[(l—ps) (~-sin 6 cos 6 sin ¢ sin Y

+ sin2 6cos ¢ sin ¥ cos P) + —;— pd (cos 6 sin ¢ cos ¢’ sin Y cos Y -

- sin 6 cos2 ¢ sin ¥ cos2 ) +2 pS (cos2 G sin2 (b' cos ¢' sin ¥ cos ¥ -

2 y 21 . ¢ . 3
- 2 sin 6 cos 8 sin <z§‘ cos” @' sim ¢ c’os.& U sinz e (-3033 # sin ¢ cos” ;,/~)] -

2 2
- sin ¢' [% pd (cos 6 sin ¢ cos ¢' sin ¥ cos ¥ - sin 6 cos ¢' sin Y cos P) +

' 2
+ 2 ps (co_s2 6.sin2 q&' cos @' sin Y cos P - 2 sin 6 cos O sin ¢ cos ¢ -

* sin ¥ cos2 Y+ sin2 6 cos3 @ sin ¥ 0053 zb)i|} di (I11-53)
Integration of ¥ from -7 to 7 gives
thb =0 thb'r =0 (TII-54)

since all terms are odd functions of {.
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The second term of I:) is,
v hb

hzb

dL = PO T r2 sin @' {sin o' [(1 - ps) (cos2 8 sin ¢' cos ¥ -

- sin 6 cos 6 cos @' cos2 v) + % pd (cos 6 sin2 (2)' cos ¥ -,

' 2
- sin 6 sin @ cos ¢' cos2 Y) + 2ps (cos™ 6 sin3 Qﬁ' cos P -

2 2 2 2 3
- 2 sin B cos 6 sin ¢' cos ¢' cos” ¥ + sin” @ sin ¢ cos” ¢' cos w):l -

- (sin ¢ - cos ¢') [(1 - ps) (-sin 6cos 6 sin @t + sin2 6 cos QS' cos Y) +

3

+ 2 pd (cos. 0 sin ¢' cos ¢ cos ¥ - sin 6 cos2 o cos2 ) +2 pS

2 1 2
(c:os2 B sin“ ¢ cos @' cos ¥~ 2 sin 8 cos 6 sin ¢' cos” ¢ cos2 Y+

+ sin2 6 cos3 (b' cos3 zb)]} dy

Integrating,

Lh =P T rzsincb'{(l—p)[sinGcosGsincb'(sin(b-cos@') fdzb+
2b ol s 7

+ (cos2 6 sin2 (b' - sin2 @ sin ¢ cos @' + sin2 6 cos2 ¢') cos Y dy -

- sin 6 cos 0 sin ¢' cos ¢ ﬁ:oszzbdzb + % Py @

-sin¢ cos ¢') -

. [cosesin(b' cos ¥ dY - sin @ cos ¢'fcos2{bd¢b

+2p(1-sm¢cos¢)[coszesm2¢' cospdy -

- 2s1n900s951n¢ cos¢ cos lbdtb+sm Ocos ¢ j'cos ;bdzb]}

Integrating Equation (III-55) from = - mto ¥ = 7 gives

(III-55)
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1r P0 1'1 r2 sin q)'{ a- ps) [2 sin 6 cos 6 sin ¢' (sin ¢ -~ cos a)') -

Lhb

2

3 pd (1 - sin ¢ cos ¢') [-sin 6 cos ¢':l +

- sin 8 cos O sin ¢' cos ¢':| +

+ 2 ps (1 - sin @ cos ¢') [- 2 sin 6 cos Osin ¢' cos ¢']

Ly b

mP T r? sin 6 [(1 -p) cos 6 (2 sin ¢ sin® ¢' - 3 sin> @' cos ¢') +

3 pd sin @' cos QS' (1 -sin @ cos (b') -4 ps cos 6 sin2 ¢' cos ¢' .

. (1 - sin ¢cos ¢')] (01-56)

'
For piecewise integrations A¢', the change in @ between the centers of adjacent

longitude wires is

a
bo' = —ri (I1-57)

assuming that the wires are spaced by a_ .

'

Piecewise integration of (III-56) from ¢' =B@togp = g -0,

2 . _r _ : ——
Lhsz = 'rrPO'rlr sme{(l—ps)cose[aw({Il 6+smecos9} sin ¢

2 2
cos3¢+sin3 9)+ % 2 sin29sin¢ -3 sin 6 cos B - sin ¢ cos q))] +

+

3 3

sinGcos9+J4):|+4pscos0[:—ai—(% sin¢{-6-sinecos6+

+

3 1 2
2 8in 6 cos 9} + 3 sin36+J5)+ % (- sin” 8 cos 9+sin¢sin29-

. co:s.2 6 +J (II1-58)

6

T e re——

2 r 1 .2 1., 3 1, 9
pd[aw (2 sin” ® + = sin ¢ cos 9+J3) + 5 (sin ¢ sin Bcos 6 -

P
P h b AR WLtV  ve w L



The third component of Lyp is, using Equations (III-44), (III-48) and (III-50) through
(TI1-52),

d =P ? sin ¢ in ¢ - cos ¢') | 2 6 sin ¢' cos ¢ sin ¥ -
thb = 0Tlr sin (sin cos @) 3 pd (cos 0 sin ¢ cos in

sinecos2 ¢ sin Y cos ¥) + 2ps (coszesinz ®' cos ¢ sin ¥ -
: a2, 2 3 4 2 ‘]

- 2sinBcos @sing cos @' sinY cos Y + sin” @ cos” ¢ sin Y cos zbll -
- sin ¢' [(1—ps) (cosze sin ¢' sin ¥ - sin 8 cos 8 cos @ sin Y cos ¥) +

2 L2 0, . A L
+3 Py (cos B sin” ¢ sinyd - sin B sin @ cos ¢ sin P cos zb)+2ps

2 L3 . .2 a v e
(cos” 8 sin” ¢ sin ¢ - 2 sin B cos 6 sin” @ cos ¢ sin ¥ cos P +

., 2 ! 2 v, 2
+ sin” 6 sin ¢ cos™ ¢ sin ¥ cos zb)]} dd (III-59)

Integrating ¢ from - mto 7 gives
L, =0 Lyopp = © (I11-60)
3 3 ‘ _
since all terms are odd functions of . Now thT is complete.

From Equation (III-47) and (III-49) we need ﬁb so from (III-50), (III-51) and (IO-52)

integrated from ¢ = - 7 to m, we have a first component of _
; 2 L2 Z .3
Fb1 = ﬂ:PoTlr[:(l_ps) 2cos 6 sin” ¢ + 3 pd ~2cos @ sin @ +
t
+ 2 P (2 cos2 C) sin4 o + sin2 6 sin2 ¢ cos2 ® )] (TI1-61)

Integration of Fy,; for all the circular wires via Equation (III-13) from q)' =8 to (25' g -0
gives,

F =P T.r (l-P)cosze L (J, - 8 + sin 8 cos 9)+(sin29+cos2¢) +

blT o1l s a, 1 .

4 xr .1 . 2 1.3 3 ‘
+ 3 pdcoss[aw (2 cos B + sin Gcose—Jz)Jr2 (sin” 6 + cos ¢)]+ :

3
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r 2 1 3 1 .3 3
+Zps [aw {Zcos 6 (-4 sin @ cos @ + 7 Sin 6 cos 6 + 8{

{Jl-e + sin 8 cos 9})+ sin”  * % (2 sin 6 cos® 8 - sin 6 cos 6-6+J,) ( +

<+ r—p——y Y T

1

T

{ 2 co:s2 6 (sin4 e + cos4 @) + 'sin2 6 (siin2 (] _cos2 6+ sin:2 ¢cosz'@}]'
(II1-62)

The second component of fb, Equation (III-51), when integrated from p=-mto
Y=mis

F,_=0 F =0 (I11-63) ;

since all terms are odd functions of ¥.

The third component of F-:;a’ Equation (III-52) when integrated from ¢ =-nm tod=1m

is, v \
L2 0 2 . ' 2 1 -
Fb3 = - ﬂPOTl r sin 8 [2 (1 -ps) cos B sin ¢ + 3 pd sin® cos ¢ +
.2 0 2
+ 4 p, cos 6 sin” ¢ cos ¢] (II1-64)
and piecewise integration for all the longitude wires in the range ¢' =6to (b' = g - ¢ gives, |
F. =-q7P 7. rsin8{(1-p)cosb e (J, -6+ sin B cos 9)+(sin26+cos29) + l
b, T o1l s a 1 ]
3 w
2 r 1 3 .3 1 . 2 .2
+3pd[aw 3 (cos” 8 - sin ¢)+2(s1n9cos 6 + sin ¢cos¢)] + |
. 3 'i
+ 4ps cos 8 [aL Y (-8 -sinB cos B+ 2sinB cos 6 +J7) + a
w -
+ % (sin2 6 cos2 6 + sin2 @ cos2 ¢)] (I11-65)
The torque Lyt is found by piecewise integration of Equatien (0I-49),
-t —oX -
Lpr = XX Fyp (II1-66)




The Equations (III-45), (III-62), (II-63) and (ITI-65) substituted into (III-66) gives a
first component of,

be T = yL Fb T (II1-67)
1 3
since FpyT = 0, where Fb3T is given by Equation (III-65). The'second component of
xbT 15
Lo = 2L Fp.1 % o T (TI-68)
2 1 3
where Fb T and Fb T are found in Equations (III-62) and (IN-65) and the third component
L 1 3
of L BT is
Ly = -YLFp (I11-69)
3 1
where again Fb T is found in Equation (III-62).
1
Piecewise integration of Equation (II-47) is
g = = (I11-70)

Lpr = Lyt ™~ Dt

—

where the components of thT

the components of I—:X T 2re found in Equations (III-67), (III-68) and (III-69). Note (III-54)
and (III-60) are zero.

are found in Equations (III-54), (III-58) and (III-60) while
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Longitude Surfaces Farthest from Sun  0<@!
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Figure III-5 shows the area in ijk coordinates.

3

The vectors ;'b’ -s-<and h.E) are

3 i
sing? cos 6

nt')= cos®'sin ¥| s= 0

cos @' cos ¥ -gin 6

The offset vector is

X/ = yL
2L

And

dA]'Oz‘rlrsiM'd*/J

hl')==r

\}(s'm?S

Figure III-5

-(sin® - cos®')

-sin @' sin ¥

-sin®! cos ¥

S - ni)= +cos Bsin @' - sin Bcos @' cos ¥

(III-71)

(I11-72)

(I11-73)




By comparing Figures 4 and 5 we see that s and x do not change, dAy = daj), ;b = B{)
- - hnd -

at all positions and hb = —hl') at all positions. Therefore de = dF]'O. Also we see that

integrations in this case are over the same regions as was in the case closer to the sun.

- We may write these torques like in Equation (III-70),

- '—»'

Lyt thT Lot (H1-74)

I11-48) indicates that

- - — -
4 - - = .- -5
hb f ht X dF f h XdF, =-L (I1I=75)

- -

! m e
thT th T

Equation

(

then

while from Equation (I1I-49)

-y - - Ld -—) -
t = x! f = = -
. be x'X Fb x X Fb be (I11-76)
! =
then, beT beT

Equations (III-75) and (III-76) substituted into (III-74} gives

-¢

thT LT (HI=77)

where the components of L are respectively Equations (III-54), (III-58), (III-60) and

hbT

fhe components of L are Equations (III-67), (III-68), (III-69). Again (III-54) and

xbT
(I1I-60) are zero.

Like Equation (III-43), the back surface is shaded a factor of K, so (III-43) becomes

for this case,

-

- )
Lpr=Lpp + K Lp (II1-78)

Case when®' < 8 on Longitude sides closest to sun

Figure (III-6) shows the area in theijk coordinate system and the related vectors.
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With @' < 6, s shines on the outside and the inside of the cone. The solar force

Figure III-6

equation is valid only if ﬁb -8 2 0 therefore let lbl be Ywhen 5 * be = (0. Then we
define ny, for Y < ¢1. Let these ﬁb s be respectively Hbl and ﬁbZ' Then

cos 6 (sin® - cosg ' X
5= 0 |h =r|sing'sind x=|y, (I11-79)
-sin 6 sin® cos ¥ | Zr
and the normal vectors are
[ _sing *
Ebu = | cos ¢' sin ¥ | where ¥ < lpl (I11-80)
| -cos @' cos ib_‘
sing ! _
B, = |cos @' sin ) where 4’>¢1 (I11-81)
| cos @' cos Y
We may find *bl by s * o= 0.
5 - ﬁbu=sinecos¢' cos 4)1 -cos 0 sing * = 0
Then
cos ¥, =202
°$*1 “tan 6 (IT1-82)
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Since ﬁbu = _ﬁbv we may compare this case with the case when the sun s sees only
. . & . _ s . - = - - _—- I o .', < N
the inside of the cone, Figure III-4. In this figure, nb nbv nbu' Therefore if ¢ ¢1,
(III-50) through (I1I-52) become

0 .
de 0= P,7% T sin ¢ dY (1—PS)(—cos Osin® * + sin Bcos Bcosy ' cos ¥) + 2 P (cos@sinz(,é'
; "]
P ' 2 9.3 . 2 !
-sin@sing ! cos ¢' cos lb) + Zps (-cos” Bsin’g '+2sinBcos Bsin” ¢ * cosp' cos ¥ -
2
—sin® Bsin &' cos> @' cos> wJ (I11-83)
dF, =P T,r sing' d¥ —2-—0- (cos8 sinp! cos¢ ' sin ¥- sin Gcos2¢\' sin ¥ cos ¥)+
bou "01 3 d
2, 2 , . - - 2. 3 2
‘+2ps(_cos Bsin"¢*cos ¢* sind+ 2sin@osBstd'cos @ sin Ycosd -sin“Gcos ¢! sin dcos )
(I11-84)
2
» sind' d¢ | (1~ i in & - si '
de' us%'r_l_l sing' dy [;(1 os)(s1n900s Bsin @' - sin Bcosd' cos Y) +
2 . . 2 2 2, .2
*3704 (cos@sing*cosdcosP-sinfcos d'cos” ¥) +2 ps(—cos Osin ¢'cosPcos P +

2 2
+2sinfcosb sing* cos2¢' cos ¥ - sin Gbos3 @' cos3z_bﬂ (111-85)

We may readily see that if Equation (III-53) had the specular reflection and absorption
sign changes, it's integral from —l,bl to wl would still be zero, therefore

thbu =0 thbTu =0 (111-86)

Changing the sign on the specular reflection and absorption terms and integrating
Equation (III-55) from ¥= —zbl to = zbl gives

_ - 2 ., - _ . o s _ e i
i Lhzbu Poqc1 r sing {(1 _ps) [:Zd)l sin Bcos Qs1n¢ (sin® - cosg')
2, .2 2
—ZSinibl(cosstinzsb'—sm Osingcosd' + sin"Bcos @) +

+(¥ 1Jrsinzb Lc08 zbl)sinG cosf sing! cos¢':i +
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2
4 mcin 1 ind AN ind ; '
v 3Py (Imsingt cos ¢ ') I:231n¢1005951n, (1!J1+smlplcos$l)sm9f;os¢:] +
+ZPS'(1-SiIIQSCos¢’) [-2simb 1coszesinzcb' + (111-87)
)]

+25inf cosb sing? cos¢'(z/)1+simblcosd)1)-§— simf)1(2+cos2?/>1)sin2600s2¢i|

Integration of (59) from ¥ --wl to Y=Y 1 with the sign changes gives,

L = ( L =0 - (I11-88) -

To find the offset torque we need to integrate deu from ¥ = —zbl to b= 3/>1. Thus the

first component is, using (83)

. ,
= i ' - - i ' i ¥
Fblu Po.ﬁr sin ¢ {(1 ps) l Zzblcos Osing +2sin;blsm O cosbBcosd I +

+ g— pd [:zmlcosesinzgs' - 2sinzb1sin6sin¢' cos t,b':\ +

(111-89)
24 .. 3 X . .2
+2 os -2wlcos 6 sin ¢! +4sm¢>1smﬂcosesm P! cos® -
. . 24 . 2
-(zpl + smlblcoszbl)sm Bsind! cos ¢>Z|}
Integration of Equation (I11-84) from ¥ =~zb1 tod =0 1 gives

F, =0 F =0 (111-90)

and integration of Equation (85) from ¥ =~tb1 toy = zbl gives

o . 2 ,
Fb3u Porlr sing {(1—ps) [2¢1s1necosesin¢' - Zsmtblsm 6cos ¢:| +

+-2~o 2siny _cos Bsing'cos¢' -(Y _+siny _cosy )sinGcoszcb' + .
3 %d 1 1 1°9%%1 (111-91)

| 2
+2ps [—2simblcos26sin2¢'cos¢'+2(;b 1+sina,blcosa,b 1)sinGcosO sing'cos @' -

- —;— sinzbl(z + cosztb 1)sinze 00830)5]}

o



Instead of finding those u torques we duplicate this work on the v torques. Since
these equations are very similar, they combine in many places.

When ¢ > !bl,- Equations (III-44) through (III-53) are valid. From the table of

integrals for integration of ¥ from lbl to 2m - lbl in Equation (I1II-53) gives

thbv =0 thbTv =0 (I11-92)

Likewise Equation (III-55) fits this case. Integration of this equation from ¥ 1 to 27 - zbl

gives,

2 , 2 2
e D rling _ _ . (i PR o2,
Lhzbv Po'rlr sing {(1 ps) I}(ﬂ zbl)smecosesmab (sin® - cos #) 2sm:b1(cos Bsin®

2
—sinzesinv»cosq‘;’ + sin Gcoszcb') -(m- wl—simblcoszbl)sinecose sianw'cosw] +
+—§—— pd(l—sin¢cos;¢') [—Zsinwlcosesin(b'-(n —zbl—sinzblcoszbl)sinecos¢':] +
2
+2ps(1—sin¢cos¢') —2sind>lcoszesin P - 2(17—wl—sinwlcoswl)sinecosesinwcos(,ﬂ.. .

4-—':-— sim,b1 (2 + cos2¢1)sm290082¢]} (111-93)

The third component of thv is found by integrating Equation (III-59) from = ¢ 1 to

U= 2m -zbl

h.bv Lh3va =0 (I1-94)

Integration of Equations (II1-50), (III-51) and (III-52) from ¥ = zj)l to =27~ ;bl gives

t
he components of Fbv’

_ . ) 2 i o s :
Fblv— Po‘rlr Sm¢'{(1—ps) 2(m zbl)cos 6sing +2s1ntblsmecos900s¢] +

+—§— P [Z(Tr- zpl)cose sin2¢' + 2siny, sinGsin(b'cosqf:l +
s 3 X (IT1-95)
+2ps [2(17— zbl)cos @sin @' + 4sin;b1 sinBcos Bsin @ 'cosp ! +
X . 2 2
+(Tm- ¢1 - sin zplcoslbl)sm 6sin ¢ 'cos ¢J}
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v W

* L F =0 F =0 , (111-96)
F =P T r sing'< (1-p ) | -2(7- ¥_)sinBcosO sing'-2 sind sinzecos¢' S+
b3v ol s 1 1
2 2
2 o o Vo b —aind ) .
A I:ZSlnibl cosOsing' cos @' - (W l,bl smlblcoslbl)smecos ) :l +
. 2, .2 . . 2 .
+2;os [—Zsmlblcos 6sin"¢'cos®' -2(T - lbl - sinwlcoslbl)smecosesmqb'cos @' -
- -g- siny (2 coszlbl)sinze 005305':] } " (I11-97)

We now total the torques and forces for the u and v cases. The total of Equations
(III-86) and (111-92)

thbuv =Ly  bu Ly py =0 (II1-98)
Likewise from Equations (III-87) and (II1I-93)

2 (i )
= = ) - - i ind' (sind — 1 _
Lhzbuv Lhzbu + Lhzbv PoTlr sing {(1 pS) l 4( 2 lbl)smecose sing'(sin® - cos @')

. .2 W 2n . 2 2
-4sm¢l(cos26 sin" @' - sin"BsinPcos®' + sin &os @') -
i 2
-2 (—2-- lbl - sin ll)lcosd)l)sinecosesinvﬁ'cos¢" -2 "oy (1 - siffcos ¢') sinf cos? +

3

+20_(1-singcos ¢') [—-4sin¢100529 sin? @* - 4(127— -*Pl—sinlblcosipl)sinﬂcosGsin(b'cossb' -

-3— sin¢1(2+coszd)l) sin6 cos2¢']} (111-99)
The third component of thuv is found by adding Equation (11I-88) to (IlI-94),
I"h bu i Lh bv Lh buv 0 (I11-100)
3 3 3
The total force is likewise found by adding Fbu + Fbv' The first component is the sum

of Equations (ITI-89) and (III-95).
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m 2
= = T ' - —_— i t
Fbluv Fblu + Fblv ‘ P0 T sing {(1 ps) EL( 5 Kbl) cos B sin ¢' +

o
+4sinlb1sinecosecos¢'] +§~ﬂpd cosB sin2¢’ + ZDS l}(—z‘ - ibl)coszesin3¢' +

+8sin¢1sin9cosesinz¢'cos B+ 2( Ez - ¢b1 - sin'blcoslbl)sinzesin¢'cos2¢]}

(III-101)

The total of Equations (III-90) and (III-96) gives the second component,

Fb uy = Fb U + Fb v =0 (I11-102)

2 2
The total of Equations (III-91) and (IiI-97) gives the third component,
. m 2
_ -D T ' _ L X oy A , vl
Fb3uv Fb3u + Fb3v PO 1T sing {(1 ps) [4( 5 {bl)smecosesmcb 4sm§bls1n Bcos(b]
2 . 2 . 2, . 2
-3 ﬂpd sin@cos @' + 2;0S |;—4s1n{blcos @sin"¢' cosp' - (I11-103)

-4 (~;L— {bl - sinl,blcoslbl)sinecosesinaﬁ'cos2¢' —4? sin!bl(2+cos21b1)sinzecos3¢J}

The offset torque components are found using Equation (II1I-49) for the uv case,

— - -

buv = * X Fouy (I11-104)

or in components,

= - I
Lo uv =L Fo_uv (I11-105)
1 3
xb_uv = zL Fb uv onb uv (I1I-106)
2 1 3
L uwv = b wy (I11-107)
3 - 1
since Fb — 0 in Equation (III-102). The other two force components are found in
2

Equations (III-101) and (III-103).
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Case When ¢ < 6on Longitude Sides Fartherest from Sun

Figure III-7 shows the area in the i j k coordinate system and the related vectors.
These are constructed like those in Figure III-5.

' »
) e
N

Figure 1II-7

Therefore we agam have s and X unchanged dA =dA! dA, = dAb , nbu

_ bu bu’ bv
— _h! - _h! — [
bu n'bv = bu hbu and hb hb for all positions, Therefore d I‘b =d Fbu and
dev = dF]'OV. Also the integrations are over the same regions as for Figure III-6.

Case uv Equations (III-47) through (III-49), not summed over all the longitude wires, become

L. =L +L =L. +L . -L_. -L (I11-108)

1
ol
]
1l
>l
i
oy
+
fl
X 1
b

Then Equation (III-108) becomes

—-—

Lbuv hbuv beuv (I1I-109)
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Case uv' Equations (III-74) throbugh (I1I-78), not summed over all the longitude wires
become

3

X [ + 1! [ _ -
buv u va thu thv beu bev (III-110)

_I u X deu - _thu

- /f;bv xd Fbv - -thv

] —_ -" L]
thu fhb X deu

.—-)' _ -—; — ,
thv f v Xd Fbv

—)' :—b'- +-—>' =—~» - +—: =—-» - =—-;
beuv beu bev x X (Fbu I‘bv) x X Fbuv beuv

il

- Then Equation (III-110) becomes

- -—D —

' -
Lbuv hbuv beuv (1I-111)

where the components of thuv are respectively Equations (III—98) (II1-98), (III-100), and
the components of x X Fbuv =0 <buy A€ given in Equations (III-105), (III-106) and (III-107).

With the back surfaces shaded by a ratio of K1, the total uv torques, front and back
are

i
]

+ —
Lyyy = L K Lbuv (II1-112)

Equation (III-112) is written for only one longitude wire. This equation must be piece-
wise integrated over ¢' from ¢' = 0 to @' =6. This integration is rather lengthy so we may
resort to numerical summation. Since there are many thousands of wires, we approximate
this summation by saying Ny, wires produce identical torques. Since L is a function

only of ¢' we write this weighted summation of every N wires as BUV
m
- w
1 = 1 N s »
Lpuyyr = Flgyv @ N Jfl Loyy 0N, 497 (I11-113)
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where m is the number of terms of the summation. If this is a chosen constant, NW is
found by the limits of ¢' being from 0 to €. Then at the upper limit,

mwNwA¢' =6

then
N = —___ (1I1-114)
w m_ Ag'
w
Equation (III-57), and (III-114) substituted into (III-113) gives
m
L . Or Ew j — III-11
BUVT m_a_ .- “BuovUm (HI-113)
ww j=1 w
Let the total torque due to all four cases be f:TT' then
— - —_ + — + - _ )
LTT LAT LBT LBUVT (TI-116)

We now have all the cases of torques. We are now interested in combining the different
cases to find the total torque. To do this we define a short hand notation in terms of Equation
numbers. These equation numbers are written as elements of non-transformable matrices.
For example, the components of L., are found in Equations (III-26), (III-28) and (III-29) re-
spectively. In the following equati?_i_t)ls,‘ which contain equation numbers, the Roman numeral
III is omitted. We now define the La as the matrix,

T
. 26
L = |28 (IT1-117)
aT 29

These non-transfor_,mable matrices are all written with double bars so as not to confuse
them with transformable matricies such as

L
B alT
LaT - La T
2
L
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Likewise

. 36

L' = 38
aT 39

Then from Equations (III-43), (III-117) and (III-118)

. O = 0 + _" =
LAT LaT Kl LaT

26 + K1~36
+ .
28 K1 38
+ .
29 K1 .39

Equations (III-67), (III-68), (II-69) and (III-70) produce

!
13
i

bT hbT beT -

and Equation (III-77) gives

54 - yL- 65 .
-7 . + X .
58 zL 62 xo 65
+v_.
60 Vi 62

-54 -y, +65

- - . + .
58 -z 62+ x +65
-60 + .

60 + y -62

Then substituting (III-120) and (III-121) into (III-78),

Lpp =Lyr " Ky Lpp =

(1-K,)-54 - (1+K,) y, -65
(1-K1).§8 - (I+K,) (z-+62 - X. -65)
(1-K,)-60 + (1+K ) y; -62

(I1I-118)

(I1I-119)

(III-120)

(I1-121)

(IT1-122)
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Equations (IT[-119) and (III-122) added gives,

- -

AT BT

29 + K1~39 + (1—K1)-60 + (1+K1) yL-62

26 + K +36 + (1-K )-54 - (L+K ) y, -65
Ly *Lyp = |28+ K 38+ (1-K)-58 - (4K,) (2 -62 - x - 65)

(IT1-123)

Since the toreques represented by Equations (II1-54) and (III-60) are zero, (IT1I-123)

reduces to

. - + .
26 + K1 36 (1 Kl) Yy, 65

I i = . - - - . - + 65
Lyp*Lgp = [ 28+ K 38 + (1-K ) 58 - (1+K)) (2 +62 - X, +65)
29 + K +39 + (1K) yp - 62

From Equations (III-98), (III-99) and (III-100)

o 98
L = {99
hbuv 100

and from Equations (III-101), (III-102) and (III-103)

. 101
F = |l102
bu 103

Equations (III-105), (III-106) and (III-107) give

105 y,-103
= = . 1 -x. 1
beuv 106 ZL 10 Xo 03
107 -y 101

Then from Equations (III-109), (III-125) and (II1-127)
98 - Yy, 103

- -

Lbuv - hbuv beuv - 99 - (ZL. 101 - Xo. 103
100 + y, *101
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(I1-125)

(111-126)

(III-127)
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This equation reduces to

—yL’103
= - *101 +x 1
LbuV 99 zL 10 X 03
+ . '
Yy, 101

since the torques in Equations (III-98) and (III-100) are zero.
gives

B . . - yL'103

' = e - =
Lbuv hbuv beuv
+ Y1, 101

and Equation (III-112) with (III-128) and (III-129) becomes

- (1+K,) y; - 103

-99 - *101 +'x. o1
99 Z 0 X 03

(II-128)

Likewise Equation (I1I-111)

(II1-129)

- - -—_ + -0' _ . _ + . .
Louy = Louy T K1 Lhgy || 7K)+99 = (14K ) z; +101 + (14K ) x - 103

+ (14K,) y - 101

(IT1-130)

Equations (IX-99), (III-101) and (II-103) are in terms of 4' and ¢ 1 Equation (III-82),

tan 9

cos ¥, = 118

gives ¥_ in terms of ¢'. These three equations are now summed according to Equation (I1I-115).

Let this summation be symbolized in the non-transformable matrices as a T sigma preceding

the equation number to be summed. For example,

_ m
6r w
= ’ !
299_m " .E thuv(¢)
ww j=1 2"

an @' *

- -1 tan @' v "= i
where each ¥ 1 is replaced by ;bl =Ccos 18 and each ¢' is then replaced by ¢' = j m_ .

*Note 0<qb1< m
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Then from Equation (III-130)

- (14K ) y *T 103 |
Lpyyr = [|(17K) 99 - (14K, )(z; -T 101 - X, -2 103) . @m-1sy
+ (14K ) y, *D 101

and substituting (I11I-124) and (ITI-131) into (III-116) gives

3 26+K, *36 -(1+K)) yL°65 (14K ) yL-Z}103
LTT = 28+K1~38+(1—K1) -58—(1+K1)(zL-62—‘xo-65)+(1-K1)-299-(1+K1)(zL-2101—x,0~2103)
29+K, *39 HI+K,) y, 62 +(I+K)) yL-2101
(I11-132)

The torque represented by Equation (IH—l32) is due to the wire surfaces that are
radial. This torque must be added to the torques on the spherical surfaces found previously.

Constants of ¢

J1=

B ]

- ¢ -sin ¢ cos ¢

J =sin¢(2+cosz¢)

2
1 2 1 4
= - - - i ¢
J3 2cos (0} 3sm ‘
. . 3
J, =-gin¢ cos ¢ + sin @ cos ¢

4

J5=+% sin ¢ (';"-¢+sin¢ cos @ -2sin3¢ cos(b)-%cos:g‘ﬁ

J6 =-g8in ¢ cosz¢ + sin3¢ cosz¢

J7=g—¢+sin¢ cos¢—28in3¢'cos¢ ¢
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